Cargando…
Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data
BACKGROUND: Large-scale collaborative precision medicine initiatives (e.g., The Cancer Genome Atlas (TCGA)) are yielding rich multi-omics data. Integrative analyses of the resulting multi-omics data, such as somatic mutation, copy number alteration (CNA), DNA methylation, miRNA, gene expression, and...
Autores principales: | EL-Manzalawy, Yasser, Hsieh, Tsung-Yu, Shivakumar, Manu, Kim, Dokyoon, Honavar, Vasant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157248/ https://www.ncbi.nlm.nih.gov/pubmed/30255801 http://dx.doi.org/10.1186/s12920-018-0388-0 |
Ejemplares similares
-
Recent advances in B-cell epitope prediction methods
por: EL-Manzalawy, Yasser, et al.
Publicado: (2010) -
MinOmics, an Integrative and Immersive Tool for Multi-Omics Analysis
por: Maes, Alexandre, et al.
Publicado: (2018) -
On Evaluating MHC-II Binding Peptide Prediction Methods
por: EL-Manzalawy, Yasser, et al.
Publicado: (2008) -
Predicting linear B‐cell epitopes using string kernels
por: EL‐Manzalawy, Yasser, et al.
Publicado: (2008) -
FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues
por: EL-Manzalawy, Yasser, et al.
Publicado: (2016)