Cargando…
Data mining and machine learning approaches for the integration of genome-wide association and methylation data: methodology and main conclusions from GAW20
BACKGROUND: Multiple layers of genetic and epigenetic variability are being simultaneously explored in an increasing number of health studies. We summarize here different approaches applied in the Data Mining and Machine Learning group at the GAW20 to integrate genome-wide genotype and methylation a...
Autores principales: | Darst, Burcu, Engelman, Corinne D., Tian, Ye, Lorenzo Bermejo, Justo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157271/ https://www.ncbi.nlm.nih.gov/pubmed/30255774 http://dx.doi.org/10.1186/s12863-018-0646-3 |
Ejemplares similares
-
Methods and results from the genome-wide association group at GAW20
por: Wang, Xuexia, et al.
Publicado: (2018) -
Causal modeling in a multi-omic setting: insights from GAW20
por: Auerbach, Jonathan, et al.
Publicado: (2018) -
GAW20: methods and strategies for the new frontiers of epigenetics and pharmacogenomics
por: Tintle, Nathan L., et al.
Publicado: (2018) -
Indirect effect inference and application to GAW20 data
por: Li, Liming, et al.
Publicado: (2018) -
Transmission and decorrelation methods for detecting rare variants using sequencing data from related individuals
por: Darst, Burcu F., et al.
Publicado: (2016)