Cargando…
Comparison of MetaMap and cTAKES for entity extraction in clinical notes
BACKGROUND: Clinical notes such as discharge summaries have a semi- or unstructured format. These documents contain information about diseases, treatments, drugs, etc. Extracting meaningful information from them becomes challenging due to their narrative format. In this context, we aimed to compare...
Autores principales: | Reátegui, Ruth, Ratté, Sylvie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157281/ https://www.ncbi.nlm.nih.gov/pubmed/30255810 http://dx.doi.org/10.1186/s12911-018-0654-2 |
Ejemplares similares
-
MetaMap Lite in Excel: Biomedical Named-Entity Recognition for Non-Technical Users
por: Bhupatiraju, Ravi Teja, et al.
Publicado: (2017) -
A Systematic Approach to Configuring MetaMap for Optimal Performance
por: Jing, Xia, et al.
Publicado: (2022) -
Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps
por: Dilthey, Alexander T., et al.
Publicado: (2019) -
Automated SNOMED CT concept and attribute relationship detection through a web-based implementation of cTAKES
por: Kersloot, Martijn G., et al.
Publicado: (2019) -
MetaMap: an atlas of metatranscriptomic reads in human disease-related RNA-seq data
por: Simon, L M, et al.
Publicado: (2018)