Cargando…

Urinary Alpha-1-Acid Glycoprotein Is a Sensitive Marker of Glomerular Protein Leakage at Altitude

Talks, Ben J., Susie B. Bradwell, John Delamere, Will Rayner, Alex Clarke, Chris T. Lewis, Owen D. Thomas, and Arthur R. Bradwell. Urinary alpha-1-acid glycoprotein is a sensitive marker of glomerular protein leakage at altitude. High Alt Med Biol. 19:295–298, 2018.—Proteinuria is an established fea...

Descripción completa

Detalles Bibliográficos
Autores principales: Talks, Ben J., Bradwell, Susie B., Delamere, John, Rayner, Will, Clarke, Alex, Lewis, Chris T., Thomas, Owen D., Bradwell, Arthur R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mary Ann Liebert, Inc., publishers 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157339/
https://www.ncbi.nlm.nih.gov/pubmed/29889556
http://dx.doi.org/10.1089/ham.2018.0017
Descripción
Sumario:Talks, Ben J., Susie B. Bradwell, John Delamere, Will Rayner, Alex Clarke, Chris T. Lewis, Owen D. Thomas, and Arthur R. Bradwell. Urinary alpha-1-acid glycoprotein is a sensitive marker of glomerular protein leakage at altitude. High Alt Med Biol. 19:295–298, 2018.—Proteinuria is an established feature of ascent to altitude and may be caused by a loss of negative charges on glomerular capillary walls (GCWs). To test this hypothesis, we measured two similar sized but oppositely charged proteins in urine: negatively charged alpha-1-acid glycoprotein (α1-AGP, 41–43 kDa) and positively charged dimeric lambda free light chains (λ-FLCs, 50 kDa). Twenty-four-hour urinary leakage was compared with albumin, a 66 kDa negatively charged protein. We studied 23 individuals (ages 23–78 years, male = 17) at baseline (140 m) and daily during an expedition to 5035 m. The results showed a significant increase in median urinary leakage of α1-AGP (p < 0.0001; 6.85-fold) and albumin (p = 0.0006; 1.65-fold) with ascent to altitude, but no significant increase in leakage of λ-FLCs (p = 0.39; 1.14-fold). α1-AGP correlated with the daily ascent profile (p = 0.0026) and partial pressure of oxygen (p = 0.01), whereas albumin showed no correlation (p = 0.19). Urinary α1-AGP was a more sensitive marker of altitude proteinuria than urinary albumin and λ-FLCs, and supported the possibility of loss of GCW negative charges at altitude.