Cargando…

S100A4 as a Target of the E3-Ligase Asb2β and Its Effect on Engineered Heart Tissue

Background: S100A4 has recently emerged as an important player in cardiac disease, affecting phenotype development in animal models of myocardial infarction and pathological cardiac hypertrophy, albeit it is unclear whether S100A4 exerts a detrimental or beneficial function. The goal of the current...

Descripción completa

Detalles Bibliográficos
Autores principales: Braumann, Simon, Thottakara, Tilo, Stücker, Sabrina, Reischmann-Düsener, Silke, Krämer, Elisabeth, Groß, Julia, Hirt, Marc N., Doroudgar, Shirin, Carrier, Lucie, Friedrich, Felix W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157440/
https://www.ncbi.nlm.nih.gov/pubmed/30283351
http://dx.doi.org/10.3389/fphys.2018.01292
_version_ 1783358271776620544
author Braumann, Simon
Thottakara, Tilo
Stücker, Sabrina
Reischmann-Düsener, Silke
Krämer, Elisabeth
Groß, Julia
Hirt, Marc N.
Doroudgar, Shirin
Carrier, Lucie
Friedrich, Felix W.
author_facet Braumann, Simon
Thottakara, Tilo
Stücker, Sabrina
Reischmann-Düsener, Silke
Krämer, Elisabeth
Groß, Julia
Hirt, Marc N.
Doroudgar, Shirin
Carrier, Lucie
Friedrich, Felix W.
author_sort Braumann, Simon
collection PubMed
description Background: S100A4 has recently emerged as an important player in cardiac disease, affecting phenotype development in animal models of myocardial infarction and pathological cardiac hypertrophy, albeit it is unclear whether S100A4 exerts a detrimental or beneficial function. The goal of the current study was to analyze S100A4 expression in models of cardiac pathology, investigate its degradation by the ubiquitin-proteasome system (UPS), and furthermore examine the functional effects of S100A4 levels in a 3D model of engineered heart tissue (EHT). Methods and Results: S100A4 mRNA and protein levels were analyzed in different models of cardiac pathology via quantitative RT-PCR and Western blot, showing a higher S100A4 steady-state protein concentration in hearts of Mybpc3-knock-in (KI) hypertrophic cardiomyopathy (HCM) mice. COS-7 cells co-transfected with plasmids encoding mutant (MUT) Asb2β lacking the E3 ligase activity in combination with V5-tagged S100A4 plasmid presented higher S100A4-V5 protein steady-state concentrations than cells co-transfected with the Asb2β wild type (WT) plasmid. This effect was blunted by treatment with the specific proteasome inhibitor epoxomicin. Adeno-associated virus serotype 6 (AAV6)-mediated S100A4 overexpression in a 3D model of EHT did not affect contractile parameters. Immunofluorescence analysis showed a cytosolic and partly nuclear expression pattern of S100A4. Gene expression analysis in EHTs overexpressing S100A4-V5 showed markedly lower steady-state concentrations of genes involved in cardiac fibrosis and pathological cardiac hypertrophy. Conclusion: We showed that S100A4 protein level is higher in cardiac tissue of Mybpc3-KI HCM mice probably as a result of a lower degradation by the E3 ligase Asb2β. While an overexpression of S100A4 did not alter contractile parameters in EHTs, downstream gene expression analysis points toward modulation of signaling cascades involved in fibrosis and hypertrophy.
format Online
Article
Text
id pubmed-6157440
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-61574402018-10-03 S100A4 as a Target of the E3-Ligase Asb2β and Its Effect on Engineered Heart Tissue Braumann, Simon Thottakara, Tilo Stücker, Sabrina Reischmann-Düsener, Silke Krämer, Elisabeth Groß, Julia Hirt, Marc N. Doroudgar, Shirin Carrier, Lucie Friedrich, Felix W. Front Physiol Physiology Background: S100A4 has recently emerged as an important player in cardiac disease, affecting phenotype development in animal models of myocardial infarction and pathological cardiac hypertrophy, albeit it is unclear whether S100A4 exerts a detrimental or beneficial function. The goal of the current study was to analyze S100A4 expression in models of cardiac pathology, investigate its degradation by the ubiquitin-proteasome system (UPS), and furthermore examine the functional effects of S100A4 levels in a 3D model of engineered heart tissue (EHT). Methods and Results: S100A4 mRNA and protein levels were analyzed in different models of cardiac pathology via quantitative RT-PCR and Western blot, showing a higher S100A4 steady-state protein concentration in hearts of Mybpc3-knock-in (KI) hypertrophic cardiomyopathy (HCM) mice. COS-7 cells co-transfected with plasmids encoding mutant (MUT) Asb2β lacking the E3 ligase activity in combination with V5-tagged S100A4 plasmid presented higher S100A4-V5 protein steady-state concentrations than cells co-transfected with the Asb2β wild type (WT) plasmid. This effect was blunted by treatment with the specific proteasome inhibitor epoxomicin. Adeno-associated virus serotype 6 (AAV6)-mediated S100A4 overexpression in a 3D model of EHT did not affect contractile parameters. Immunofluorescence analysis showed a cytosolic and partly nuclear expression pattern of S100A4. Gene expression analysis in EHTs overexpressing S100A4-V5 showed markedly lower steady-state concentrations of genes involved in cardiac fibrosis and pathological cardiac hypertrophy. Conclusion: We showed that S100A4 protein level is higher in cardiac tissue of Mybpc3-KI HCM mice probably as a result of a lower degradation by the E3 ligase Asb2β. While an overexpression of S100A4 did not alter contractile parameters in EHTs, downstream gene expression analysis points toward modulation of signaling cascades involved in fibrosis and hypertrophy. Frontiers Media S.A. 2018-09-19 /pmc/articles/PMC6157440/ /pubmed/30283351 http://dx.doi.org/10.3389/fphys.2018.01292 Text en Copyright © 2018 Braumann, Thottakara, Stücker, Reischmann-Düsener, Krämer, Groß, Hirt, Doroudgar, Carrier and Friedrich. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Braumann, Simon
Thottakara, Tilo
Stücker, Sabrina
Reischmann-Düsener, Silke
Krämer, Elisabeth
Groß, Julia
Hirt, Marc N.
Doroudgar, Shirin
Carrier, Lucie
Friedrich, Felix W.
S100A4 as a Target of the E3-Ligase Asb2β and Its Effect on Engineered Heart Tissue
title S100A4 as a Target of the E3-Ligase Asb2β and Its Effect on Engineered Heart Tissue
title_full S100A4 as a Target of the E3-Ligase Asb2β and Its Effect on Engineered Heart Tissue
title_fullStr S100A4 as a Target of the E3-Ligase Asb2β and Its Effect on Engineered Heart Tissue
title_full_unstemmed S100A4 as a Target of the E3-Ligase Asb2β and Its Effect on Engineered Heart Tissue
title_short S100A4 as a Target of the E3-Ligase Asb2β and Its Effect on Engineered Heart Tissue
title_sort s100a4 as a target of the e3-ligase asb2β and its effect on engineered heart tissue
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157440/
https://www.ncbi.nlm.nih.gov/pubmed/30283351
http://dx.doi.org/10.3389/fphys.2018.01292
work_keys_str_mv AT braumannsimon s100a4asatargetofthee3ligaseasb2banditseffectonengineeredhearttissue
AT thottakaratilo s100a4asatargetofthee3ligaseasb2banditseffectonengineeredhearttissue
AT stuckersabrina s100a4asatargetofthee3ligaseasb2banditseffectonengineeredhearttissue
AT reischmanndusenersilke s100a4asatargetofthee3ligaseasb2banditseffectonengineeredhearttissue
AT kramerelisabeth s100a4asatargetofthee3ligaseasb2banditseffectonengineeredhearttissue
AT großjulia s100a4asatargetofthee3ligaseasb2banditseffectonengineeredhearttissue
AT hirtmarcn s100a4asatargetofthee3ligaseasb2banditseffectonengineeredhearttissue
AT doroudgarshirin s100a4asatargetofthee3ligaseasb2banditseffectonengineeredhearttissue
AT carrierlucie s100a4asatargetofthee3ligaseasb2banditseffectonengineeredhearttissue
AT friedrichfelixw s100a4asatargetofthee3ligaseasb2banditseffectonengineeredhearttissue