Cargando…
Automatic epilepsy detection using fractal dimensions segmentation and GP–SVM classification
OBJECTIVE: The most important part of signal processing for classification is feature extraction as a mapping from original input electroencephalographic (EEG) data space to new features space with the biggest class separability value. Features are not only the most important, but also the most diff...
Autores principales: | Jirka, Jakub, Prauzek, Michal, Krejcar, Ondrej, Kuca, Kamil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157576/ https://www.ncbi.nlm.nih.gov/pubmed/30275697 http://dx.doi.org/10.2147/NDT.S167841 |
Ejemplares similares
-
Use of Mobile Phones as Intelligent Sensors for Sound Input Analysis and Sleep State Detection
por: Krejcar, Ondrej, et al.
Publicado: (2011) -
Automatic prediction of tumour malignancy in breast cancer with fractal dimension
por: Chan, Alan, et al.
Publicado: (2016) -
Fractal dimension complexity of gravitation fractals in central place theory
por: Banaszak, Michał, et al.
Publicado: (2023) -
Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model
por: Mambou, Sebastien Jean, et al.
Publicado: (2018) -
Surface Evaluation of Orthodontic Wires Using Texture and Fractal Dimension Analysis
por: Sarul, Michał, et al.
Publicado: (2021)