Cargando…
Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images
Automated segmentation of object boundaries or surfaces is crucial for quantitative image analysis in numerous biomedical applications. For example, retinal surfaces in optical coherence tomography (OCT) images play a vital role in the diagnosis and management of retinal diseases. Recently, graph ba...
Autores principales: | Shah, Abhay, Zhou, Leixin, Abrámoff, Michael D., Wu, Xiaodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157759/ https://www.ncbi.nlm.nih.gov/pubmed/30615698 http://dx.doi.org/10.1364/BOE.9.004509 |
Ejemplares similares
-
Automated Segmentability Index for Layer Segmentation of Macular SD-OCT Images
por: Lee, Kyungmoo, et al.
Publicado: (2016) -
A comparison of deep learning U-Net architectures for posterior segment OCT retinal layer segmentation
por: Kugelman, Jason, et al.
Publicado: (2022) -
A Hybrid Model Composed of Two Convolutional Neural Networks (CNNs) for Automatic Retinal Layer Segmentation of OCT Images in Retinitis Pigmentosa (RP)
por: Wang, Yi-Zhong, et al.
Publicado: (2021) -
Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images
por: Vermeer, K. A., et al.
Publicado: (2011) -
Retinal layer segmentation of macular OCT images using boundary classification
por: Lang, Andrew, et al.
Publicado: (2013)