Cargando…
Light transport in homogeneous tissue with m-dependent anisotropic scattering II: Fourier transform solution and consistent relations
This paper is the second of two focusing on the analytical solutions for light transport in infinite homogeneous tissue with an azimuth-dependent (m-dependent) anisotropic scattering kernel by two approaches, Case’s singular eigenfuncions (CSEs) expansion and Fourier transform, and proving the consi...
Autores principales: | Wang, Lin, Rong, Meng, Li, Kaiyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157762/ https://www.ncbi.nlm.nih.gov/pubmed/30615711 http://dx.doi.org/10.1364/BOE.9.004031 |
Ejemplares similares
-
Light transport in homogeneous tissue with m-dependent anisotropic scattering I: Case’s singular eigenfunctions solution and Chandrasekhar polynomials
por: Wang, Lin, et al.
Publicado: (2018) -
Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering
por: Jo, YoungJu, et al.
Publicado: (2014) -
Actin-driven cell dynamics probed by Fourier transform light scattering
por: Ding, Huafeng, et al.
Publicado: (2010) -
Fourier Transform on the Homogeneous Space of 3D Positions and Orientations for Exact Solutions to Linear PDEs
por: Duits, Remco, et al.
Publicado: (2019) -
Calculation of the brightness of light: in the case of anisotropic scattering
por: Feigelson, E M, et al.
Publicado: (1960)