Cargando…
Ultrasound-assisted photothermal therapy and real-time treatment monitoring
Photothermal therapy (PTT) has the capability for selective treatment, in which light delivered to the target is converted into heat and subsequently causes coagulative necrosis. However, optical scattering in biological media limits light penetration, thus reducing therapeutic efficacy. Here, we de...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157783/ https://www.ncbi.nlm.nih.gov/pubmed/30615724 http://dx.doi.org/10.1364/BOE.9.004472 |
Sumario: | Photothermal therapy (PTT) has the capability for selective treatment, in which light delivered to the target is converted into heat and subsequently causes coagulative necrosis. However, optical scattering in biological media limits light penetration, thus reducing therapeutic efficacy. Here, we demonstrate that the temperatures generated by light and ultrasound energies can be added constructively in resected melanoma cancers, which causes an increase in treatment depth. This method is called dual thermal therapy (DTT). It is also shown that combined ultrasound and photoacoustic images acquired using the pulse sequence proposed in this paper can be used for real-time monitoring of DTT. |
---|