Cargando…
Modeling and prediction of clinical symptom trajectories in Alzheimer’s disease using longitudinal data
Computational models predicting symptomatic progression at the individual level can be highly beneficial for early intervention and treatment planning for Alzheimer’s disease (AD). Individual prognosis is complicated by many factors including the definition of the prediction objective itself. In thi...
Autores principales: | Bhagwat, Nikhil, Viviano, Joseph D., Voineskos, Aristotle N., Chakravarty, M. Mallar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157905/ https://www.ncbi.nlm.nih.gov/pubmed/30216352 http://dx.doi.org/10.1371/journal.pcbi.1006376 |
Ejemplares similares
-
Identifying psychosis spectrum youth using support vector machines and cerebral blood perfusion as measured by arterial spin labeled fMRI
por: Overton, Dawson J., et al.
Publicado: (2020) -
Manual-Protocol Inspired Technique for Improving Automated MR Image Segmentation during Label Fusion
por: Bhagwat, Nikhil, et al.
Publicado: (2016) -
F20. SEX-SPECIFIC STRUCTURAL AND FUNCTIONAL CIRCUIT DIFFERENCES IN YOUTH WITH PSYCHOSIS SPECTRUM SYMPTOMS
por: Jacobs, Grace, et al.
Publicado: (2018) -
DISC1 and Striatal Volume: A Potential Risk Phenotype For mental Illness
por: Chakravarty, M. Mallar, et al.
Publicado: (2012) -
Modeling Alzheimer's disease progression utilizing clinical trial and ADNI data to predict longitudinal trajectory of CDR‐SB
por: Jamalian, Samira, et al.
Publicado: (2023)