Cargando…

Deletion of BmoR affects the expression of genes related to thiol/disulfide balance in Bacteroides fragilis

Bacteroides fragilis, an opportunistic pathogen and commensal bacterium in the gut, is one the most aerotolerant species among strict anaerobes. However, the mechanisms that control gene regulation in response to oxidative stress are not completely understood. In this study, we show that the MarR ty...

Descripción completa

Detalles Bibliográficos
Autores principales: Teixeira, Felipe L., Pauer, Heidi, Costa, Scarlathe B., Smith, C. Jeffrey, Domingues, Regina M. C. P., Rocha, Edson R., Lobo, Leandro A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158253/
https://www.ncbi.nlm.nih.gov/pubmed/30258073
http://dx.doi.org/10.1038/s41598-018-32880-7
Descripción
Sumario:Bacteroides fragilis, an opportunistic pathogen and commensal bacterium in the gut, is one the most aerotolerant species among strict anaerobes. However, the mechanisms that control gene regulation in response to oxidative stress are not completely understood. In this study, we show that the MarR type regulator, BmoR, regulates the expression of genes involved in the homeostasis of intracellular redox state. Transcriptome analysis showed that absence of BmoR leads to altered expression in total of 167 genes. Sixteen of these genes had a 2-fold or greater change in their expression. Most of these genes are related to LPS biosynthesis and carbohydrates metabolism, but there was a significant increase in the expression of genes related to the redox balance inside the cell. A pyridine nucleotide-disulfide oxidoreductase located directly upstream of bmoR was shown to be repressed by direct binding of BmoR to the promoter region. The expression of two other genes, coding for a thiosulphate:quinone-oxidoreductase and a thioredoxin, are indirectly affected by bmoR mutation during oxygen exposure. Phenotypic assays showed that BmoR is important to maintain the thiol/disulfide balance in the cell, confirming its relevance to B. fragilis response to oxidative stress.