Cargando…

Genetic and Systematic Approaches Toward G Protein-Coupled Abiotic Stress Signaling in Plants

Heterotrimeric G protein, composed of Gα, Gβ, and Gγ subunits, modulates plant adaptations to environmental stresses such as high salinity, drought, extreme temperatures and high light intensity. Most of these evidence were however derived solely from conventional genetics methods with which stress-...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Ting-Ying, Urano, Daisuke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158310/
https://www.ncbi.nlm.nih.gov/pubmed/30294337
http://dx.doi.org/10.3389/fpls.2018.01378
Descripción
Sumario:Heterotrimeric G protein, composed of Gα, Gβ, and Gγ subunits, modulates plant adaptations to environmental stresses such as high salinity, drought, extreme temperatures and high light intensity. Most of these evidence were however derived solely from conventional genetics methods with which stress-associated phenotypes were compared between wild type and various G protein mutant plants. Recent advances in systematic approaches, mainly transcriptome and proteome, have contributed to in-depth understanding of molecular linkages between G proteins and environmental changes. Here, we update our knowledge on the roles of G proteins in abiotic stress responses. Furthermore, we highlight the current whole genome studies and integrated omics approach to better understand the fundamental G protein functions involved in abiotic stress responses. It is our purpose here to bridge the gap between molecular mechanisms in G protein science and stress biology and pave the way toward crop improvement researches in the future.