Cargando…

Spatio-Temporal Dynamics of Intrinsic Networks in Functional Magnetic Imaging Data Using Recurrent Neural Networks

We introduce a novel recurrent neural network (RNN) approach to account for temporal dynamics and dependencies in brain networks observed via functional magnetic resonance imaging (fMRI). Our approach directly parameterizes temporal dynamics through recurrent connections, which can be used to formul...

Descripción completa

Detalles Bibliográficos
Autores principales: Hjelm, R. Devon, Damaraju, Eswar, Cho, Kyunghyun, Laufs, Helmut, Plis, Sergey M., Calhoun, Vince D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158311/
https://www.ncbi.nlm.nih.gov/pubmed/30294250
http://dx.doi.org/10.3389/fnins.2018.00600
_version_ 1783358403749347328
author Hjelm, R. Devon
Damaraju, Eswar
Cho, Kyunghyun
Laufs, Helmut
Plis, Sergey M.
Calhoun, Vince D.
author_facet Hjelm, R. Devon
Damaraju, Eswar
Cho, Kyunghyun
Laufs, Helmut
Plis, Sergey M.
Calhoun, Vince D.
author_sort Hjelm, R. Devon
collection PubMed
description We introduce a novel recurrent neural network (RNN) approach to account for temporal dynamics and dependencies in brain networks observed via functional magnetic resonance imaging (fMRI). Our approach directly parameterizes temporal dynamics through recurrent connections, which can be used to formulate blind source separation with a conditional (rather than marginal) independence assumption, which we call RNN-ICA. This formulation enables us to visualize the temporal dynamics of both first order (activity) and second order (directed connectivity) information in brain networks that are widely studied in a static sense, but not well-characterized dynamically. RNN-ICA predicts dynamics directly from the recurrent states of the RNN in both task and resting state fMRI. Our results show both task-related and group-differentiating directed connectivity.
format Online
Article
Text
id pubmed-6158311
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-61583112018-10-05 Spatio-Temporal Dynamics of Intrinsic Networks in Functional Magnetic Imaging Data Using Recurrent Neural Networks Hjelm, R. Devon Damaraju, Eswar Cho, Kyunghyun Laufs, Helmut Plis, Sergey M. Calhoun, Vince D. Front Neurosci Neuroscience We introduce a novel recurrent neural network (RNN) approach to account for temporal dynamics and dependencies in brain networks observed via functional magnetic resonance imaging (fMRI). Our approach directly parameterizes temporal dynamics through recurrent connections, which can be used to formulate blind source separation with a conditional (rather than marginal) independence assumption, which we call RNN-ICA. This formulation enables us to visualize the temporal dynamics of both first order (activity) and second order (directed connectivity) information in brain networks that are widely studied in a static sense, but not well-characterized dynamically. RNN-ICA predicts dynamics directly from the recurrent states of the RNN in both task and resting state fMRI. Our results show both task-related and group-differentiating directed connectivity. Frontiers Media S.A. 2018-09-20 /pmc/articles/PMC6158311/ /pubmed/30294250 http://dx.doi.org/10.3389/fnins.2018.00600 Text en Copyright © 2018 Hjelm, Damaraju, Cho, Laufs, Plis and Calhoun. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Hjelm, R. Devon
Damaraju, Eswar
Cho, Kyunghyun
Laufs, Helmut
Plis, Sergey M.
Calhoun, Vince D.
Spatio-Temporal Dynamics of Intrinsic Networks in Functional Magnetic Imaging Data Using Recurrent Neural Networks
title Spatio-Temporal Dynamics of Intrinsic Networks in Functional Magnetic Imaging Data Using Recurrent Neural Networks
title_full Spatio-Temporal Dynamics of Intrinsic Networks in Functional Magnetic Imaging Data Using Recurrent Neural Networks
title_fullStr Spatio-Temporal Dynamics of Intrinsic Networks in Functional Magnetic Imaging Data Using Recurrent Neural Networks
title_full_unstemmed Spatio-Temporal Dynamics of Intrinsic Networks in Functional Magnetic Imaging Data Using Recurrent Neural Networks
title_short Spatio-Temporal Dynamics of Intrinsic Networks in Functional Magnetic Imaging Data Using Recurrent Neural Networks
title_sort spatio-temporal dynamics of intrinsic networks in functional magnetic imaging data using recurrent neural networks
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158311/
https://www.ncbi.nlm.nih.gov/pubmed/30294250
http://dx.doi.org/10.3389/fnins.2018.00600
work_keys_str_mv AT hjelmrdevon spatiotemporaldynamicsofintrinsicnetworksinfunctionalmagneticimagingdatausingrecurrentneuralnetworks
AT damarajueswar spatiotemporaldynamicsofintrinsicnetworksinfunctionalmagneticimagingdatausingrecurrentneuralnetworks
AT chokyunghyun spatiotemporaldynamicsofintrinsicnetworksinfunctionalmagneticimagingdatausingrecurrentneuralnetworks
AT laufshelmut spatiotemporaldynamicsofintrinsicnetworksinfunctionalmagneticimagingdatausingrecurrentneuralnetworks
AT plissergeym spatiotemporaldynamicsofintrinsicnetworksinfunctionalmagneticimagingdatausingrecurrentneuralnetworks
AT calhounvinced spatiotemporaldynamicsofintrinsicnetworksinfunctionalmagneticimagingdatausingrecurrentneuralnetworks