Cargando…
Accurate Reconstruction of Image Stimuli From Human Functional Magnetic Resonance Imaging Based on the Decoding Model With Capsule Network Architecture
In neuroscience, all kinds of computation models were designed to answer the open question of how sensory stimuli are encoded by neurons and conversely, how sensory stimuli can be decoded from neuronal activities. Especially, functional Magnetic Resonance Imaging (fMRI) studies have made many great...
Autores principales: | Qiao, Kai, Zhang, Chi, Wang, Linyuan, Chen, Jian, Zeng, Lei, Tong, Li, Yan, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158374/ https://www.ncbi.nlm.nih.gov/pubmed/30294269 http://dx.doi.org/10.3389/fninf.2018.00062 |
Ejemplares similares
-
Category Decoding of Visual Stimuli From Human Brain Activity Using a Bidirectional Recurrent Neural Network to Simulate Bidirectional Information Flows in Human Visual Cortices
por: Qiao, Kai, et al.
Publicado: (2019) -
Magnetic Resonance Imaging Findings After Superior Capsule Reconstruction
por: Reed, Dale Nicholas, et al.
Publicado: (2021) -
Constraint-Free Natural Image Reconstruction From fMRI Signals Based on Convolutional Neural Network
por: Zhang, Chi, et al.
Publicado: (2018) -
A top-down manner-based DCNN architecture for semantic image segmentation
por: Qiao, Kai, et al.
Publicado: (2017) -
A Method for Accurate Reconstructions of the Upper Airway Using Magnetic Resonance Images
por: Xiong, Huahui, et al.
Publicado: (2015)