Cargando…
A New Approach for Advertising CTR Prediction Based on Deep Neural Network via Attention Mechanism
Click-through rate prediction is critical in Internet advertising and affects web publisher's profits and advertiser's payment. The traditional method of obtaining features using feature extraction did not consider the sparseness of advertising data and the highly nonlinear association bet...
Autores principales: | Wang, Qianqian, Liu, Fang'ai, Xing, Shuning, Zhao, Xiaohui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158939/ https://www.ncbi.nlm.nih.gov/pubmed/30302123 http://dx.doi.org/10.1155/2018/8056541 |
Ejemplares similares
-
Session interest model for CTR prediction based on self-attention mechanism
por: Wang, Qianqian, et al.
Publicado: (2022) -
A CTR prediction model based on session interest
por: Wang, Qianqian, et al.
Publicado: (2022) -
An improved advertising CTR prediction approach based on the fuzzy deep neural network
por: Jiang, Zilong, et al.
Publicado: (2018) -
TSSCM: A synergism-based three-step cascade model for influence maximization on large-scale social networks
por: Zhao, Xiaohui, et al.
Publicado: (2019) -
Prediction of SO(2) Concentration Based on AR-LSTM Neural Network
por: Ju, Jie, et al.
Publicado: (2022)