Cargando…

The Benefits of Decision Tree to Predict Survival in Patients with Glioblastoma Multiforme with the Use of Clinical and Imaging Features

BACKGROUND: Machine learning is a type of artificial intelligence which aims to improve machine with the ability of extracting knowledge from the environment. Glioblastoma multiforme (GBM) is one of the most common and aggressive primary malignant brain tumors in adults. Due to a low rate of surviva...

Descripción completa

Detalles Bibliográficos
Autores principales: Nematollahi, Mohtaram, Jajroudi, Mahdie, Arbabi, Farshid, Azarhomayoun, Amir, Azimifar, Zohreh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6159095/
https://www.ncbi.nlm.nih.gov/pubmed/30283530
http://dx.doi.org/10.4103/ajns.AJNS_336_16
Descripción
Sumario:BACKGROUND: Machine learning is a type of artificial intelligence which aims to improve machine with the ability of extracting knowledge from the environment. Glioblastoma multiforme (GBM) is one of the most common and aggressive primary malignant brain tumors in adults. Due to a low rate of survival in patients with these tumors, machine learning can help physicians for better decision-making. The aim of this paper is to develop a machine learning model for predicting the survival rate of patients with GBM based on clinical features and magnetic resonance imaging (MRI). MATERIALS AND METHODS: The present investigation is an observational study conducted to predict the survival rate in patients with GBM in 12 months. Fifty-five patients who were registered in five Iranian Hospitals (Tehran) during 2012–2014 were selected in this study. RESULTS: This study used Cox and C5.0 decision tree models based on clinical features and combined them with MRI. Accuracy, sensitivity, and specification parameters used to evaluate the models. The result of Cox and C5.0 for clinical feature was <32.73%, 22.5%, 45.83%>, <72.73%, 67.74%, 79.19%>, respectively; also, the result of Cox and C5.0 for both features was <60%, 48.58%, 75%>, <90.91%, 96.77%, 88.33%>, respectively. CONCLUSION: Using C5.0 decision tree model in both survival models including clinical features, both the imaging features and the clinical features as the covariates, shows additional predictive values and better results. The tumor width and Karnofsky performance status scores were determined as the most important parameters in the survival prediction of these types of patients.