Cargando…
An improved machine learning pipeline for urinary volatiles disease detection: Diagnosing diabetes
MOTIVATION: The measurement of disease biomarkers in easily–obtained bodily fluids has opened the door to a new type of non–invasive medical diagnostics. New technologies are being developed and fine–tuned in order to make this possibility a reality. One such technology is Field Asymmetric Ion Mobil...
Autores principales: | Martinez-Vernon, Andrea S., Covington, James A., Arasaradnam, Ramesh P., Esfahani, Siavash, O’Connell, Nicola, Kyrou, Ioannis, Savage, Richard S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160042/ https://www.ncbi.nlm.nih.gov/pubmed/30261000 http://dx.doi.org/10.1371/journal.pone.0204425 |
Ejemplares similares
-
Variation in Gas and Volatile Compound Emissions from Human Urine as It Ages, Measured by an Electronic Nose
por: Esfahani, Siavash, et al.
Publicado: (2016) -
Non-Invasive Diagnosis of Diabetes by Volatile Organic Compounds in Urine Using FAIMS and Fox4000 Electronic Nose
por: Esfahani, Siavash, et al.
Publicado: (2018) -
Differentiating Coeliac Disease from Irritable Bowel Syndrome by Urinary Volatile Organic Compound Analysis – A Pilot Study
por: Arasaradnam, Ramesh P., et al.
Publicado: (2014) -
Exploratory Study Using Urinary Volatile Organic Compounds for the Detection of Hepatocellular Carcinoma
por: Bannaga, Ayman S., et al.
Publicado: (2021) -
Urinary Volatiles and Chemical Characterisation for the Non-Invasive Detection of Prostate and Bladder Cancers
por: Tyagi, Heena, et al.
Publicado: (2021)