Cargando…
NIR-II fluorescence imaging using indocyanine green nanoparticles
Fluorescence imaging in the second near-infrared window (NIR-II) holds promise for real-time deep tissue imaging. In this work, we investigated the NIR-II fluorescence properties of a liposomal formulation of indocyanine green (ICG), a FDA-approved dye that was recently shown to exhibit NIR-II fluor...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160486/ https://www.ncbi.nlm.nih.gov/pubmed/30262808 http://dx.doi.org/10.1038/s41598-018-32754-y |
Sumario: | Fluorescence imaging in the second near-infrared window (NIR-II) holds promise for real-time deep tissue imaging. In this work, we investigated the NIR-II fluorescence properties of a liposomal formulation of indocyanine green (ICG), a FDA-approved dye that was recently shown to exhibit NIR-II fluorescence. Fluorescence spectra of liposomal-ICG were collected in phosphate-buffered saline (PBS) and plasma. Imaging studies in an Intralipid(®) phantom were performed to determine penetration depth. In vivo imaging studies were performed to test real-time visualization of vascular structures in the hind limb and intracranial regions. Free ICG, NIR-I imaging, and cross-sectional imaging modalities (MRI and CT) were used as comparators. Fluorescence spectra demonstrated the strong NIR-II fluorescence of liposomal-ICG, similar to free ICG in plasma. In vitro studies demonstrated superior performance of liposomal-ICG over free ICG for NIR-II imaging of deep (≥4 mm) vascular mimicking structures. In vivo, NIR-II fluorescence imaging using liposomal-ICG resulted in significantly (p < 0.05) higher contrast-to-noise ratio compared to free ICG for extended periods of time, allowing visualization of hind limb and intracranial vasculature for up to 4 hours post-injection. In vivo comparisons demonstrated higher vessel conspicuity with liposomal-ICG-enhanced NIR-II imaging compared to NIR-I imaging. |
---|