Cargando…
Phoenics: A Bayesian Optimizer for Chemistry
[Image: see text] We report Phoenics, a probabilistic global optimization algorithm identifying the set of conditions of an experimental or computational procedure which satisfies desired targets. Phoenics combines ideas from Bayesian optimization with concepts from Bayesian kernel density estimatio...
Autores principales: | Häse, Florian, Roch, Loïc M., Kreisbeck, Christoph, Aspuru-Guzik, Alán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161047/ https://www.ncbi.nlm.nih.gov/pubmed/30276246 http://dx.doi.org/10.1021/acscentsci.8b00307 |
Ejemplares similares
-
Machine learning for quantum dynamics: deep learning of excitation energy transfer properties
por: Häse, Florian, et al.
Publicado: (2017) -
Chimera: enabling hierarchy based multi-objective optimization for self-driving laboratories
por: Häse, Florian, et al.
Publicado: (2018) -
Automatic Differentiation in Quantum Chemistry with
Applications to Fully Variational Hartree–Fock
por: Tamayo-Mendoza, Teresa, et al.
Publicado: (2018) -
ChemOS: An orchestration software to democratize autonomous discovery
por: Roch, Loïc M., et al.
Publicado: (2020) -
Efficiency of energy funneling in the photosystem II supercomplex of higher plants
por: Kreisbeck, Christoph, et al.
Publicado: (2016)