Cargando…
Hunting for Organic Molecules with Artificial Intelligence: Molecules Optimized for Desired Excitation Energies
[Image: see text] This work presents a proof-of-concept study in artificial-intelligence-assisted (AI-assisted) chemistry where a machine-learning-based molecule generator is coupled with density functional theory (DFT) calculations, synthesis, and measurement. Although deep-learning-based molecule...
Autores principales: | Sumita, Masato, Yang, Xiufeng, Ishihara, Shinsuke, Tamura, Ryo, Tsuda, Koji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161049/ https://www.ncbi.nlm.nih.gov/pubmed/30276245 http://dx.doi.org/10.1021/acscentsci.8b00213 |
Ejemplares similares
-
De novo creation of a naked eye–detectable fluorescent molecule based on quantum chemical computation and machine learning
por: Sumita, Masato, et al.
Publicado: (2022) -
Understanding the evolution of a de novo molecule generator via characteristic functional group monitoring
por: Fujita, Takehiro, et al.
Publicado: (2022) -
QCforever: A Quantum
Chemistry Wrapper for Everyone
to Use in Black-Box Optimization
por: Sumita, Masato, et al.
Publicado: (2022) -
Pushing property limits in materials discovery via boundless objective-free exploration
por: Terayama, Kei, et al.
Publicado: (2020) -
Hunt For Molecules Colloquium
Publicado: (2005)