Cargando…

Effect of 5-Oxo-2-Pyrrolidinecarboxylic Acid (PCA) as a New Topically Applied Agent for Dry Eye Syndrome Treatment

The aim of the study was the evaluation of the suitability of 5-oxo-2-pyrrolidinecarboxylic acid (PCA), also in combination with hyaluronic acid (HA), as artificial tears for treatment of dry eye syndrome (DES). Different aqueous formulations containing 0.10% w/w of PCA were used to determine: (i) e...

Descripción completa

Detalles Bibliográficos
Autores principales: Tampucci, Silvia, Monti, Daniela, Burgalassi, Susi, Terreni, Eleonora, Zucchetti, Erica, Baldacci, Filippo, Chetoni, Patrizia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161197/
https://www.ncbi.nlm.nih.gov/pubmed/30149648
http://dx.doi.org/10.3390/pharmaceutics10030137
Descripción
Sumario:The aim of the study was the evaluation of the suitability of 5-oxo-2-pyrrolidinecarboxylic acid (PCA), also in combination with hyaluronic acid (HA), as artificial tears for treatment of dry eye syndrome (DES). Different aqueous formulations containing 0.10% w/w of PCA were used to determine: (i) ex vivo permeation profile of PCA in isolated rabbit corneas; (ii) in vivo residence time of PCA in the precorneal area of rabbits; and (iii) in vivo ability of PCA to counteract the reduction of tear production in an experimental model of DES induced in rabbits. The pharmacokinetic profile of PCA in tear fluid was characterized by high concentrations immediately after application, followed by a rapid decrease, with half-life values of 17.16 and 22.27 min for solutions containing PCA alone and in combination with HA, respectively, when 100 µL of solutions were instilled. The addition of HA almost doubled the PCA bioavailability minimizing the ex vivo apparent corneal permeability of PCA. A positive Shirmer Test Score (STS) was observed for PCA compared to contralateral eyes at all days of treatment for PCA/HA formulation. PCA provides protection from desiccation probably for its osmoprotective activity and high water–binding capability, and this behaviour was enhanced by HA.