Cargando…

MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study

BACKGROUND: With the shift of research focus towards the pre-dementia stage of Alzheimer’s disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, combined wi...

Descripción completa

Detalles Bibliográficos
Autores principales: ten Kate, Mara, Redolfi, Alberto, Peira, Enrico, Bos, Isabelle, Vos, Stephanie J., Vandenberghe, Rik, Gabel, Silvy, Schaeverbeke, Jolien, Scheltens, Philip, Blin, Olivier, Richardson, Jill C., Bordet, Regis, Wallin, Anders, Eckerstrom, Carl, Molinuevo, José Luis, Engelborghs, Sebastiaan, Van Broeckhoven, Christine, Martinez-Lage, Pablo, Popp, Julius, Tsolaki, Magdalini, Verhey, Frans R. J., Baird, Alison L., Legido-Quigley, Cristina, Bertram, Lars, Dobricic, Valerija, Zetterberg, Henrik, Lovestone, Simon, Streffer, Johannes, Bianchetti, Silvia, Novak, Gerald P., Revillard, Jerome, Gordon, Mark F., Xie, Zhiyong, Wottschel, Viktor, Frisoni, Giovanni, Visser, Pieter Jelle, Barkhof, Frederik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161396/
https://www.ncbi.nlm.nih.gov/pubmed/30261928
http://dx.doi.org/10.1186/s13195-018-0428-1
_version_ 1783358979112435712
author ten Kate, Mara
Redolfi, Alberto
Peira, Enrico
Bos, Isabelle
Vos, Stephanie J.
Vandenberghe, Rik
Gabel, Silvy
Schaeverbeke, Jolien
Scheltens, Philip
Blin, Olivier
Richardson, Jill C.
Bordet, Regis
Wallin, Anders
Eckerstrom, Carl
Molinuevo, José Luis
Engelborghs, Sebastiaan
Van Broeckhoven, Christine
Martinez-Lage, Pablo
Popp, Julius
Tsolaki, Magdalini
Verhey, Frans R. J.
Baird, Alison L.
Legido-Quigley, Cristina
Bertram, Lars
Dobricic, Valerija
Zetterberg, Henrik
Lovestone, Simon
Streffer, Johannes
Bianchetti, Silvia
Novak, Gerald P.
Revillard, Jerome
Gordon, Mark F.
Xie, Zhiyong
Wottschel, Viktor
Frisoni, Giovanni
Visser, Pieter Jelle
Barkhof, Frederik
author_facet ten Kate, Mara
Redolfi, Alberto
Peira, Enrico
Bos, Isabelle
Vos, Stephanie J.
Vandenberghe, Rik
Gabel, Silvy
Schaeverbeke, Jolien
Scheltens, Philip
Blin, Olivier
Richardson, Jill C.
Bordet, Regis
Wallin, Anders
Eckerstrom, Carl
Molinuevo, José Luis
Engelborghs, Sebastiaan
Van Broeckhoven, Christine
Martinez-Lage, Pablo
Popp, Julius
Tsolaki, Magdalini
Verhey, Frans R. J.
Baird, Alison L.
Legido-Quigley, Cristina
Bertram, Lars
Dobricic, Valerija
Zetterberg, Henrik
Lovestone, Simon
Streffer, Johannes
Bianchetti, Silvia
Novak, Gerald P.
Revillard, Jerome
Gordon, Mark F.
Xie, Zhiyong
Wottschel, Viktor
Frisoni, Giovanni
Visser, Pieter Jelle
Barkhof, Frederik
author_sort ten Kate, Mara
collection PubMed
description BACKGROUND: With the shift of research focus towards the pre-dementia stage of Alzheimer’s disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, combined with demographic data, cognitive data and apolipoprotein E (APOE) ε4 genotype, can be used to predict amyloid pathology using machine-learning classification. METHODS: We examined 810 subjects with structural MRI data and amyloid markers from the European Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker Discovery study, including subjects with normal cognition (CN, n = 337, age 66.5 ± 7.2, 50% female, 27% amyloid positive), mild cognitive impairment (MCI, n = 375, age 69.1 ± 7.5, 53% female, 63% amyloid positive) and AD dementia (n = 98, age 67.0 ± 7.7, 48% female, 97% amyloid positive). Structural MRI scans were visually assessed and Freesurfer was used to obtain subcortical volumes, cortical thickness and surface area measures. We first assessed univariate associations between MRI measures and amyloid pathology using mixed models. Next, we developed and tested an automated classifier using demographic, cognitive, MRI and APOE ε4 information to predict amyloid pathology. A support vector machine (SVM) with nested 10-fold cross-validation was applied to identify a set of markers best discriminating between amyloid positive and amyloid negative subjects. RESULTS: In univariate associations, amyloid pathology was associated with lower subcortical volumes and thinner cortex in AD-signature regions in CN and MCI. The multi-variable SVM classifier provided an area under the curve (AUC) of 0.81 ± 0.07 in MCI and an AUC of 0.74 ± 0.08 in CN. In CN, selected features for the classifier included APOE ε4, age, memory scores and several MRI measures such as hippocampus, amygdala and accumbens volumes and cortical thickness in temporal and parahippocampal regions. In MCI, the classifier including demographic and APOE ε4 information did not improve after additionally adding imaging measures. CONCLUSIONS: Amyloid pathology is associated with changes in structural MRI measures in CN and MCI. An automated classifier based on clinical, imaging and APOE ε4 data can identify the presence of amyloid pathology with a moderate level of accuracy. These results could be used in clinical trials to pre-screen subjects for anti-amyloid therapies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13195-018-0428-1) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6161396
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-61613962018-10-01 MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study ten Kate, Mara Redolfi, Alberto Peira, Enrico Bos, Isabelle Vos, Stephanie J. Vandenberghe, Rik Gabel, Silvy Schaeverbeke, Jolien Scheltens, Philip Blin, Olivier Richardson, Jill C. Bordet, Regis Wallin, Anders Eckerstrom, Carl Molinuevo, José Luis Engelborghs, Sebastiaan Van Broeckhoven, Christine Martinez-Lage, Pablo Popp, Julius Tsolaki, Magdalini Verhey, Frans R. J. Baird, Alison L. Legido-Quigley, Cristina Bertram, Lars Dobricic, Valerija Zetterberg, Henrik Lovestone, Simon Streffer, Johannes Bianchetti, Silvia Novak, Gerald P. Revillard, Jerome Gordon, Mark F. Xie, Zhiyong Wottschel, Viktor Frisoni, Giovanni Visser, Pieter Jelle Barkhof, Frederik Alzheimers Res Ther Research BACKGROUND: With the shift of research focus towards the pre-dementia stage of Alzheimer’s disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, combined with demographic data, cognitive data and apolipoprotein E (APOE) ε4 genotype, can be used to predict amyloid pathology using machine-learning classification. METHODS: We examined 810 subjects with structural MRI data and amyloid markers from the European Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker Discovery study, including subjects with normal cognition (CN, n = 337, age 66.5 ± 7.2, 50% female, 27% amyloid positive), mild cognitive impairment (MCI, n = 375, age 69.1 ± 7.5, 53% female, 63% amyloid positive) and AD dementia (n = 98, age 67.0 ± 7.7, 48% female, 97% amyloid positive). Structural MRI scans were visually assessed and Freesurfer was used to obtain subcortical volumes, cortical thickness and surface area measures. We first assessed univariate associations between MRI measures and amyloid pathology using mixed models. Next, we developed and tested an automated classifier using demographic, cognitive, MRI and APOE ε4 information to predict amyloid pathology. A support vector machine (SVM) with nested 10-fold cross-validation was applied to identify a set of markers best discriminating between amyloid positive and amyloid negative subjects. RESULTS: In univariate associations, amyloid pathology was associated with lower subcortical volumes and thinner cortex in AD-signature regions in CN and MCI. The multi-variable SVM classifier provided an area under the curve (AUC) of 0.81 ± 0.07 in MCI and an AUC of 0.74 ± 0.08 in CN. In CN, selected features for the classifier included APOE ε4, age, memory scores and several MRI measures such as hippocampus, amygdala and accumbens volumes and cortical thickness in temporal and parahippocampal regions. In MCI, the classifier including demographic and APOE ε4 information did not improve after additionally adding imaging measures. CONCLUSIONS: Amyloid pathology is associated with changes in structural MRI measures in CN and MCI. An automated classifier based on clinical, imaging and APOE ε4 data can identify the presence of amyloid pathology with a moderate level of accuracy. These results could be used in clinical trials to pre-screen subjects for anti-amyloid therapies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13195-018-0428-1) contains supplementary material, which is available to authorized users. BioMed Central 2018-09-27 /pmc/articles/PMC6161396/ /pubmed/30261928 http://dx.doi.org/10.1186/s13195-018-0428-1 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
ten Kate, Mara
Redolfi, Alberto
Peira, Enrico
Bos, Isabelle
Vos, Stephanie J.
Vandenberghe, Rik
Gabel, Silvy
Schaeverbeke, Jolien
Scheltens, Philip
Blin, Olivier
Richardson, Jill C.
Bordet, Regis
Wallin, Anders
Eckerstrom, Carl
Molinuevo, José Luis
Engelborghs, Sebastiaan
Van Broeckhoven, Christine
Martinez-Lage, Pablo
Popp, Julius
Tsolaki, Magdalini
Verhey, Frans R. J.
Baird, Alison L.
Legido-Quigley, Cristina
Bertram, Lars
Dobricic, Valerija
Zetterberg, Henrik
Lovestone, Simon
Streffer, Johannes
Bianchetti, Silvia
Novak, Gerald P.
Revillard, Jerome
Gordon, Mark F.
Xie, Zhiyong
Wottschel, Viktor
Frisoni, Giovanni
Visser, Pieter Jelle
Barkhof, Frederik
MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
title MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
title_full MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
title_fullStr MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
title_full_unstemmed MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
title_short MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
title_sort mri predictors of amyloid pathology: results from the emif-ad multimodal biomarker discovery study
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161396/
https://www.ncbi.nlm.nih.gov/pubmed/30261928
http://dx.doi.org/10.1186/s13195-018-0428-1
work_keys_str_mv AT tenkatemara mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT redolfialberto mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT peiraenrico mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT bosisabelle mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT vosstephaniej mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT vandenbergherik mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT gabelsilvy mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT schaeverbekejolien mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT scheltensphilip mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT blinolivier mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT richardsonjillc mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT bordetregis mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT wallinanders mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT eckerstromcarl mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT molinuevojoseluis mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT engelborghssebastiaan mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT vanbroeckhovenchristine mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT martinezlagepablo mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT poppjulius mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT tsolakimagdalini mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT verheyfransrj mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT bairdalisonl mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT legidoquigleycristina mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT bertramlars mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT dobricicvalerija mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT zetterberghenrik mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT lovestonesimon mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT strefferjohannes mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT bianchettisilvia mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT novakgeraldp mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT revillardjerome mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT gordonmarkf mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT xiezhiyong mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT wottschelviktor mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT frisonigiovanni mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT visserpieterjelle mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy
AT barkhoffrederik mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy