Cargando…
MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
BACKGROUND: With the shift of research focus towards the pre-dementia stage of Alzheimer’s disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, combined wi...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161396/ https://www.ncbi.nlm.nih.gov/pubmed/30261928 http://dx.doi.org/10.1186/s13195-018-0428-1 |
_version_ | 1783358979112435712 |
---|---|
author | ten Kate, Mara Redolfi, Alberto Peira, Enrico Bos, Isabelle Vos, Stephanie J. Vandenberghe, Rik Gabel, Silvy Schaeverbeke, Jolien Scheltens, Philip Blin, Olivier Richardson, Jill C. Bordet, Regis Wallin, Anders Eckerstrom, Carl Molinuevo, José Luis Engelborghs, Sebastiaan Van Broeckhoven, Christine Martinez-Lage, Pablo Popp, Julius Tsolaki, Magdalini Verhey, Frans R. J. Baird, Alison L. Legido-Quigley, Cristina Bertram, Lars Dobricic, Valerija Zetterberg, Henrik Lovestone, Simon Streffer, Johannes Bianchetti, Silvia Novak, Gerald P. Revillard, Jerome Gordon, Mark F. Xie, Zhiyong Wottschel, Viktor Frisoni, Giovanni Visser, Pieter Jelle Barkhof, Frederik |
author_facet | ten Kate, Mara Redolfi, Alberto Peira, Enrico Bos, Isabelle Vos, Stephanie J. Vandenberghe, Rik Gabel, Silvy Schaeverbeke, Jolien Scheltens, Philip Blin, Olivier Richardson, Jill C. Bordet, Regis Wallin, Anders Eckerstrom, Carl Molinuevo, José Luis Engelborghs, Sebastiaan Van Broeckhoven, Christine Martinez-Lage, Pablo Popp, Julius Tsolaki, Magdalini Verhey, Frans R. J. Baird, Alison L. Legido-Quigley, Cristina Bertram, Lars Dobricic, Valerija Zetterberg, Henrik Lovestone, Simon Streffer, Johannes Bianchetti, Silvia Novak, Gerald P. Revillard, Jerome Gordon, Mark F. Xie, Zhiyong Wottschel, Viktor Frisoni, Giovanni Visser, Pieter Jelle Barkhof, Frederik |
author_sort | ten Kate, Mara |
collection | PubMed |
description | BACKGROUND: With the shift of research focus towards the pre-dementia stage of Alzheimer’s disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, combined with demographic data, cognitive data and apolipoprotein E (APOE) ε4 genotype, can be used to predict amyloid pathology using machine-learning classification. METHODS: We examined 810 subjects with structural MRI data and amyloid markers from the European Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker Discovery study, including subjects with normal cognition (CN, n = 337, age 66.5 ± 7.2, 50% female, 27% amyloid positive), mild cognitive impairment (MCI, n = 375, age 69.1 ± 7.5, 53% female, 63% amyloid positive) and AD dementia (n = 98, age 67.0 ± 7.7, 48% female, 97% amyloid positive). Structural MRI scans were visually assessed and Freesurfer was used to obtain subcortical volumes, cortical thickness and surface area measures. We first assessed univariate associations between MRI measures and amyloid pathology using mixed models. Next, we developed and tested an automated classifier using demographic, cognitive, MRI and APOE ε4 information to predict amyloid pathology. A support vector machine (SVM) with nested 10-fold cross-validation was applied to identify a set of markers best discriminating between amyloid positive and amyloid negative subjects. RESULTS: In univariate associations, amyloid pathology was associated with lower subcortical volumes and thinner cortex in AD-signature regions in CN and MCI. The multi-variable SVM classifier provided an area under the curve (AUC) of 0.81 ± 0.07 in MCI and an AUC of 0.74 ± 0.08 in CN. In CN, selected features for the classifier included APOE ε4, age, memory scores and several MRI measures such as hippocampus, amygdala and accumbens volumes and cortical thickness in temporal and parahippocampal regions. In MCI, the classifier including demographic and APOE ε4 information did not improve after additionally adding imaging measures. CONCLUSIONS: Amyloid pathology is associated with changes in structural MRI measures in CN and MCI. An automated classifier based on clinical, imaging and APOE ε4 data can identify the presence of amyloid pathology with a moderate level of accuracy. These results could be used in clinical trials to pre-screen subjects for anti-amyloid therapies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13195-018-0428-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6161396 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-61613962018-10-01 MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study ten Kate, Mara Redolfi, Alberto Peira, Enrico Bos, Isabelle Vos, Stephanie J. Vandenberghe, Rik Gabel, Silvy Schaeverbeke, Jolien Scheltens, Philip Blin, Olivier Richardson, Jill C. Bordet, Regis Wallin, Anders Eckerstrom, Carl Molinuevo, José Luis Engelborghs, Sebastiaan Van Broeckhoven, Christine Martinez-Lage, Pablo Popp, Julius Tsolaki, Magdalini Verhey, Frans R. J. Baird, Alison L. Legido-Quigley, Cristina Bertram, Lars Dobricic, Valerija Zetterberg, Henrik Lovestone, Simon Streffer, Johannes Bianchetti, Silvia Novak, Gerald P. Revillard, Jerome Gordon, Mark F. Xie, Zhiyong Wottschel, Viktor Frisoni, Giovanni Visser, Pieter Jelle Barkhof, Frederik Alzheimers Res Ther Research BACKGROUND: With the shift of research focus towards the pre-dementia stage of Alzheimer’s disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, combined with demographic data, cognitive data and apolipoprotein E (APOE) ε4 genotype, can be used to predict amyloid pathology using machine-learning classification. METHODS: We examined 810 subjects with structural MRI data and amyloid markers from the European Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker Discovery study, including subjects with normal cognition (CN, n = 337, age 66.5 ± 7.2, 50% female, 27% amyloid positive), mild cognitive impairment (MCI, n = 375, age 69.1 ± 7.5, 53% female, 63% amyloid positive) and AD dementia (n = 98, age 67.0 ± 7.7, 48% female, 97% amyloid positive). Structural MRI scans were visually assessed and Freesurfer was used to obtain subcortical volumes, cortical thickness and surface area measures. We first assessed univariate associations between MRI measures and amyloid pathology using mixed models. Next, we developed and tested an automated classifier using demographic, cognitive, MRI and APOE ε4 information to predict amyloid pathology. A support vector machine (SVM) with nested 10-fold cross-validation was applied to identify a set of markers best discriminating between amyloid positive and amyloid negative subjects. RESULTS: In univariate associations, amyloid pathology was associated with lower subcortical volumes and thinner cortex in AD-signature regions in CN and MCI. The multi-variable SVM classifier provided an area under the curve (AUC) of 0.81 ± 0.07 in MCI and an AUC of 0.74 ± 0.08 in CN. In CN, selected features for the classifier included APOE ε4, age, memory scores and several MRI measures such as hippocampus, amygdala and accumbens volumes and cortical thickness in temporal and parahippocampal regions. In MCI, the classifier including demographic and APOE ε4 information did not improve after additionally adding imaging measures. CONCLUSIONS: Amyloid pathology is associated with changes in structural MRI measures in CN and MCI. An automated classifier based on clinical, imaging and APOE ε4 data can identify the presence of amyloid pathology with a moderate level of accuracy. These results could be used in clinical trials to pre-screen subjects for anti-amyloid therapies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13195-018-0428-1) contains supplementary material, which is available to authorized users. BioMed Central 2018-09-27 /pmc/articles/PMC6161396/ /pubmed/30261928 http://dx.doi.org/10.1186/s13195-018-0428-1 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research ten Kate, Mara Redolfi, Alberto Peira, Enrico Bos, Isabelle Vos, Stephanie J. Vandenberghe, Rik Gabel, Silvy Schaeverbeke, Jolien Scheltens, Philip Blin, Olivier Richardson, Jill C. Bordet, Regis Wallin, Anders Eckerstrom, Carl Molinuevo, José Luis Engelborghs, Sebastiaan Van Broeckhoven, Christine Martinez-Lage, Pablo Popp, Julius Tsolaki, Magdalini Verhey, Frans R. J. Baird, Alison L. Legido-Quigley, Cristina Bertram, Lars Dobricic, Valerija Zetterberg, Henrik Lovestone, Simon Streffer, Johannes Bianchetti, Silvia Novak, Gerald P. Revillard, Jerome Gordon, Mark F. Xie, Zhiyong Wottschel, Viktor Frisoni, Giovanni Visser, Pieter Jelle Barkhof, Frederik MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study |
title | MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study |
title_full | MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study |
title_fullStr | MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study |
title_full_unstemmed | MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study |
title_short | MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study |
title_sort | mri predictors of amyloid pathology: results from the emif-ad multimodal biomarker discovery study |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161396/ https://www.ncbi.nlm.nih.gov/pubmed/30261928 http://dx.doi.org/10.1186/s13195-018-0428-1 |
work_keys_str_mv | AT tenkatemara mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT redolfialberto mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT peiraenrico mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT bosisabelle mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT vosstephaniej mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT vandenbergherik mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT gabelsilvy mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT schaeverbekejolien mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT scheltensphilip mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT blinolivier mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT richardsonjillc mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT bordetregis mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT wallinanders mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT eckerstromcarl mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT molinuevojoseluis mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT engelborghssebastiaan mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT vanbroeckhovenchristine mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT martinezlagepablo mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT poppjulius mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT tsolakimagdalini mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT verheyfransrj mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT bairdalisonl mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT legidoquigleycristina mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT bertramlars mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT dobricicvalerija mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT zetterberghenrik mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT lovestonesimon mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT strefferjohannes mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT bianchettisilvia mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT novakgeraldp mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT revillardjerome mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT gordonmarkf mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT xiezhiyong mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT wottschelviktor mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT frisonigiovanni mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT visserpieterjelle mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy AT barkhoffrederik mripredictorsofamyloidpathologyresultsfromtheemifadmultimodalbiomarkerdiscoverystudy |