Cargando…
Predicting liver disease post hepatitis virus infection: In silico pathology and pattern recognition
Autor principal: | Lidbury, Brett A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161479/ https://www.ncbi.nlm.nih.gov/pubmed/30146340 http://dx.doi.org/10.1016/j.ebiom.2018.08.032 |
Ejemplares similares
-
Infection status outcome, machine learning method and virus type interact to affect the optimised prediction of hepatitis virus immunoassay results from routine pathology laboratory assays in unbalanced data
por: Richardson, Alice M, et al.
Publicado: (2013) -
Enhancement of hepatitis virus immunoassay outcome predictions in imbalanced routine pathology data by data balancing and feature selection before the application of support vector machines
por: Richardson, Alice M., et al.
Publicado: (2017) -
One Health Approach: A Data-Driven Priority for Mitigating Outbreaks of Emerging and Re-Emerging Zoonotic Infectious Diseases
por: Ajuwon, Busayo I., et al.
Publicado: (2021) -
Nucleic Acid Sensors Involved in the Recognition of HBV in the Liver–Specific in vivo Transfection Mouse Models—Pattern Recognition Receptors and Sensors for HBV
por: Leong, Chean Ring, et al.
Publicado: (2015) -
Ross River Virus Immune Evasion Strategies and the Relevance to Post-viral Fatigue, and Myalgic Encephalomyelitis Onset
por: Lidbury, Brett A.
Publicado: (2021)