Cargando…
Cucurbitacin B Induces Hypoglycemic Effect in Diabetic Mice by Regulation of AMP-Activated Protein Kinase Alpha and Glucagon-Like Peptide-1 via Bitter Taste Receptor Signaling
Taste receptors exist in several organs from tongue to colon and have diverse functions dependent on specific cell type. In enteroendocrine L-cells, stimulation of taste receptor signaling induces incretin hormones. Among incretin hormones, glucagon-like peptide-1 (GLP-1) induces insulinotropic acti...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161541/ https://www.ncbi.nlm.nih.gov/pubmed/30298009 http://dx.doi.org/10.3389/fphar.2018.01071 |
_version_ | 1783359010393554944 |
---|---|
author | Kim, Kang-Hoon Lee, In-Seung Park, Ji Young Kim, Yumi An, Eun-Jin Jang, Hyeung-Jin |
author_facet | Kim, Kang-Hoon Lee, In-Seung Park, Ji Young Kim, Yumi An, Eun-Jin Jang, Hyeung-Jin |
author_sort | Kim, Kang-Hoon |
collection | PubMed |
description | Taste receptors exist in several organs from tongue to colon and have diverse functions dependent on specific cell type. In enteroendocrine L-cells, stimulation of taste receptor signaling induces incretin hormones. Among incretin hormones, glucagon-like peptide-1 (GLP-1) induces insulinotropic action by activating GLP-1 receptor of pancreatic β-cells. However, GLP-1 mimetic medicines have reported clinical side effects, such as autoimmune hepatitis, acute kidney injury, pancreatitis, and pancreatic cancer. Here, we hypothesized that if natural components in ethnomedicines can activate agonistic action of taste receptor; they may stimulate GLP-1 and therefore, could be developed as safe and applicable medicines to type 2 diabetes mellitus (T2DM) with minimal side effects. Cucurbitacin B (CuB) is composed of triterpenoid structure and its structural character, that represents bitterness, can stimulate AMP-activated protein kinase (AMPK) pathway. CuB ameliorated hyperglycemia by activating intestinal AMPK levels and by inducing plasma GLP-1 and insulin release in diabetic mice. This hypoglycemic action was decreased in dorsomorphin-injected mice and α-gustducin null mice. Moreover, systemic inhibition study in differentiated NCI-H716 cell line showed that CuB-mediated GLP-1 secretion was involved in activation of AMPK through α-gustducin and Gβγ-signaling of taste receptors. In summary, we conclude that, CuB represents novel hypoglycemic agents by activation of AMPK and stimulation of GLP-1 in differentiated enteroendocrine L-cells. These results suggest that taste receptor signaling-based therapeutic agents within tremendously diverse ethnomedicines, could be applied to developing therapeutics for T2DM patients. |
format | Online Article Text |
id | pubmed-6161541 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61615412018-10-08 Cucurbitacin B Induces Hypoglycemic Effect in Diabetic Mice by Regulation of AMP-Activated Protein Kinase Alpha and Glucagon-Like Peptide-1 via Bitter Taste Receptor Signaling Kim, Kang-Hoon Lee, In-Seung Park, Ji Young Kim, Yumi An, Eun-Jin Jang, Hyeung-Jin Front Pharmacol Pharmacology Taste receptors exist in several organs from tongue to colon and have diverse functions dependent on specific cell type. In enteroendocrine L-cells, stimulation of taste receptor signaling induces incretin hormones. Among incretin hormones, glucagon-like peptide-1 (GLP-1) induces insulinotropic action by activating GLP-1 receptor of pancreatic β-cells. However, GLP-1 mimetic medicines have reported clinical side effects, such as autoimmune hepatitis, acute kidney injury, pancreatitis, and pancreatic cancer. Here, we hypothesized that if natural components in ethnomedicines can activate agonistic action of taste receptor; they may stimulate GLP-1 and therefore, could be developed as safe and applicable medicines to type 2 diabetes mellitus (T2DM) with minimal side effects. Cucurbitacin B (CuB) is composed of triterpenoid structure and its structural character, that represents bitterness, can stimulate AMP-activated protein kinase (AMPK) pathway. CuB ameliorated hyperglycemia by activating intestinal AMPK levels and by inducing plasma GLP-1 and insulin release in diabetic mice. This hypoglycemic action was decreased in dorsomorphin-injected mice and α-gustducin null mice. Moreover, systemic inhibition study in differentiated NCI-H716 cell line showed that CuB-mediated GLP-1 secretion was involved in activation of AMPK through α-gustducin and Gβγ-signaling of taste receptors. In summary, we conclude that, CuB represents novel hypoglycemic agents by activation of AMPK and stimulation of GLP-1 in differentiated enteroendocrine L-cells. These results suggest that taste receptor signaling-based therapeutic agents within tremendously diverse ethnomedicines, could be applied to developing therapeutics for T2DM patients. Frontiers Media S.A. 2018-09-21 /pmc/articles/PMC6161541/ /pubmed/30298009 http://dx.doi.org/10.3389/fphar.2018.01071 Text en Copyright © 2018 Kim, Lee, Park, Kim, An and Jang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Kim, Kang-Hoon Lee, In-Seung Park, Ji Young Kim, Yumi An, Eun-Jin Jang, Hyeung-Jin Cucurbitacin B Induces Hypoglycemic Effect in Diabetic Mice by Regulation of AMP-Activated Protein Kinase Alpha and Glucagon-Like Peptide-1 via Bitter Taste Receptor Signaling |
title | Cucurbitacin B Induces Hypoglycemic Effect in Diabetic Mice by Regulation of AMP-Activated Protein Kinase Alpha and Glucagon-Like Peptide-1 via Bitter Taste Receptor Signaling |
title_full | Cucurbitacin B Induces Hypoglycemic Effect in Diabetic Mice by Regulation of AMP-Activated Protein Kinase Alpha and Glucagon-Like Peptide-1 via Bitter Taste Receptor Signaling |
title_fullStr | Cucurbitacin B Induces Hypoglycemic Effect in Diabetic Mice by Regulation of AMP-Activated Protein Kinase Alpha and Glucagon-Like Peptide-1 via Bitter Taste Receptor Signaling |
title_full_unstemmed | Cucurbitacin B Induces Hypoglycemic Effect in Diabetic Mice by Regulation of AMP-Activated Protein Kinase Alpha and Glucagon-Like Peptide-1 via Bitter Taste Receptor Signaling |
title_short | Cucurbitacin B Induces Hypoglycemic Effect in Diabetic Mice by Regulation of AMP-Activated Protein Kinase Alpha and Glucagon-Like Peptide-1 via Bitter Taste Receptor Signaling |
title_sort | cucurbitacin b induces hypoglycemic effect in diabetic mice by regulation of amp-activated protein kinase alpha and glucagon-like peptide-1 via bitter taste receptor signaling |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161541/ https://www.ncbi.nlm.nih.gov/pubmed/30298009 http://dx.doi.org/10.3389/fphar.2018.01071 |
work_keys_str_mv | AT kimkanghoon cucurbitacinbinduceshypoglycemiceffectindiabeticmicebyregulationofampactivatedproteinkinasealphaandglucagonlikepeptide1viabittertastereceptorsignaling AT leeinseung cucurbitacinbinduceshypoglycemiceffectindiabeticmicebyregulationofampactivatedproteinkinasealphaandglucagonlikepeptide1viabittertastereceptorsignaling AT parkjiyoung cucurbitacinbinduceshypoglycemiceffectindiabeticmicebyregulationofampactivatedproteinkinasealphaandglucagonlikepeptide1viabittertastereceptorsignaling AT kimyumi cucurbitacinbinduceshypoglycemiceffectindiabeticmicebyregulationofampactivatedproteinkinasealphaandglucagonlikepeptide1viabittertastereceptorsignaling AT aneunjin cucurbitacinbinduceshypoglycemiceffectindiabeticmicebyregulationofampactivatedproteinkinasealphaandglucagonlikepeptide1viabittertastereceptorsignaling AT janghyeungjin cucurbitacinbinduceshypoglycemiceffectindiabeticmicebyregulationofampactivatedproteinkinasealphaandglucagonlikepeptide1viabittertastereceptorsignaling |