Cargando…
High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation
Electrochemical exfoliation is a promising bulk method for producing graphene from graphite; in this method, an applied voltage drives ionic species to intercalate into graphite where they form gaseous species that expand and exfoliate individual graphene sheets. However, a number of obstacles have...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162260/ https://www.ncbi.nlm.nih.gov/pubmed/30266957 http://dx.doi.org/10.1038/s41598-018-32741-3 |
Sumario: | Electrochemical exfoliation is a promising bulk method for producing graphene from graphite; in this method, an applied voltage drives ionic species to intercalate into graphite where they form gaseous species that expand and exfoliate individual graphene sheets. However, a number of obstacles have prevented this approach from becoming a feasible production route; the disintegration of the graphite electrode as the method progresses is the chief difficulty. Here we show that if graphite powders are contained and compressed within a permeable and expandable containment system, the graphite powders can be continuously intercalated, expanded, and exfoliated to produce graphene. Our data indicate both high yield (65%) and extraordinarily large lateral size (>30 μm) in the as-produced graphene. We also show that this process is scalable and that graphene yield efficiency depends solely on reactor geometry, graphite compression, and electrolyte transport. |
---|