Cargando…

Resonant torsion magnetometry in anisotropic quantum materials

Unusual behavior in quantum materials commonly arises from their effective low-dimensional physics, reflecting the underlying anisotropy in the spin and charge degrees of freedom. Here we introduce the magnetotropic coefficient k = ∂(2)F/∂θ(2), the second derivative of the free energy F with respect...

Descripción completa

Detalles Bibliográficos
Autores principales: Modic, K. A., Bachmann, Maja D., Ramshaw, B. J., Arnold, F., Shirer, K. R., Estry, Amelia, Betts, J. B., Ghimire, Nirmal J., Bauer, E. D., Schmidt, Marcus, Baenitz, Michael, Svanidze, E., McDonald, Ross D., Shekhter, Arkady, Moll, Philip J. W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162279/
https://www.ncbi.nlm.nih.gov/pubmed/30266902
http://dx.doi.org/10.1038/s41467-018-06412-w
Descripción
Sumario:Unusual behavior in quantum materials commonly arises from their effective low-dimensional physics, reflecting the underlying anisotropy in the spin and charge degrees of freedom. Here we introduce the magnetotropic coefficient k = ∂(2)F/∂θ(2), the second derivative of the free energy F with respect to the magnetic field orientation θ in the crystal. We show that the magnetotropic coefficient can be quantitatively determined from a shift in the resonant frequency of a commercially available atomic force microscopy cantilever under magnetic field. This detection method enables part per 100 million sensitivity and the ability to measure magnetic anisotropy in nanogram-scale samples, as demonstrated on the Weyl semimetal NbP. Measurement of the magnetotropic coefficient in the spin-liquid candidate RuCl(3) highlights its sensitivity to anisotropic phase transitions and allows a quantitative comparison to other thermodynamic coefficients via the Ehrenfest relations.