Cargando…

Resonant torsion magnetometry in anisotropic quantum materials

Unusual behavior in quantum materials commonly arises from their effective low-dimensional physics, reflecting the underlying anisotropy in the spin and charge degrees of freedom. Here we introduce the magnetotropic coefficient k = ∂(2)F/∂θ(2), the second derivative of the free energy F with respect...

Descripción completa

Detalles Bibliográficos
Autores principales: Modic, K. A., Bachmann, Maja D., Ramshaw, B. J., Arnold, F., Shirer, K. R., Estry, Amelia, Betts, J. B., Ghimire, Nirmal J., Bauer, E. D., Schmidt, Marcus, Baenitz, Michael, Svanidze, E., McDonald, Ross D., Shekhter, Arkady, Moll, Philip J. W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162279/
https://www.ncbi.nlm.nih.gov/pubmed/30266902
http://dx.doi.org/10.1038/s41467-018-06412-w
_version_ 1783359109264834560
author Modic, K. A.
Bachmann, Maja D.
Ramshaw, B. J.
Arnold, F.
Shirer, K. R.
Estry, Amelia
Betts, J. B.
Ghimire, Nirmal J.
Bauer, E. D.
Schmidt, Marcus
Baenitz, Michael
Svanidze, E.
McDonald, Ross D.
Shekhter, Arkady
Moll, Philip J. W.
author_facet Modic, K. A.
Bachmann, Maja D.
Ramshaw, B. J.
Arnold, F.
Shirer, K. R.
Estry, Amelia
Betts, J. B.
Ghimire, Nirmal J.
Bauer, E. D.
Schmidt, Marcus
Baenitz, Michael
Svanidze, E.
McDonald, Ross D.
Shekhter, Arkady
Moll, Philip J. W.
author_sort Modic, K. A.
collection PubMed
description Unusual behavior in quantum materials commonly arises from their effective low-dimensional physics, reflecting the underlying anisotropy in the spin and charge degrees of freedom. Here we introduce the magnetotropic coefficient k = ∂(2)F/∂θ(2), the second derivative of the free energy F with respect to the magnetic field orientation θ in the crystal. We show that the magnetotropic coefficient can be quantitatively determined from a shift in the resonant frequency of a commercially available atomic force microscopy cantilever under magnetic field. This detection method enables part per 100 million sensitivity and the ability to measure magnetic anisotropy in nanogram-scale samples, as demonstrated on the Weyl semimetal NbP. Measurement of the magnetotropic coefficient in the spin-liquid candidate RuCl(3) highlights its sensitivity to anisotropic phase transitions and allows a quantitative comparison to other thermodynamic coefficients via the Ehrenfest relations.
format Online
Article
Text
id pubmed-6162279
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61622792018-10-01 Resonant torsion magnetometry in anisotropic quantum materials Modic, K. A. Bachmann, Maja D. Ramshaw, B. J. Arnold, F. Shirer, K. R. Estry, Amelia Betts, J. B. Ghimire, Nirmal J. Bauer, E. D. Schmidt, Marcus Baenitz, Michael Svanidze, E. McDonald, Ross D. Shekhter, Arkady Moll, Philip J. W. Nat Commun Article Unusual behavior in quantum materials commonly arises from their effective low-dimensional physics, reflecting the underlying anisotropy in the spin and charge degrees of freedom. Here we introduce the magnetotropic coefficient k = ∂(2)F/∂θ(2), the second derivative of the free energy F with respect to the magnetic field orientation θ in the crystal. We show that the magnetotropic coefficient can be quantitatively determined from a shift in the resonant frequency of a commercially available atomic force microscopy cantilever under magnetic field. This detection method enables part per 100 million sensitivity and the ability to measure magnetic anisotropy in nanogram-scale samples, as demonstrated on the Weyl semimetal NbP. Measurement of the magnetotropic coefficient in the spin-liquid candidate RuCl(3) highlights its sensitivity to anisotropic phase transitions and allows a quantitative comparison to other thermodynamic coefficients via the Ehrenfest relations. Nature Publishing Group UK 2018-09-28 /pmc/articles/PMC6162279/ /pubmed/30266902 http://dx.doi.org/10.1038/s41467-018-06412-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Modic, K. A.
Bachmann, Maja D.
Ramshaw, B. J.
Arnold, F.
Shirer, K. R.
Estry, Amelia
Betts, J. B.
Ghimire, Nirmal J.
Bauer, E. D.
Schmidt, Marcus
Baenitz, Michael
Svanidze, E.
McDonald, Ross D.
Shekhter, Arkady
Moll, Philip J. W.
Resonant torsion magnetometry in anisotropic quantum materials
title Resonant torsion magnetometry in anisotropic quantum materials
title_full Resonant torsion magnetometry in anisotropic quantum materials
title_fullStr Resonant torsion magnetometry in anisotropic quantum materials
title_full_unstemmed Resonant torsion magnetometry in anisotropic quantum materials
title_short Resonant torsion magnetometry in anisotropic quantum materials
title_sort resonant torsion magnetometry in anisotropic quantum materials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162279/
https://www.ncbi.nlm.nih.gov/pubmed/30266902
http://dx.doi.org/10.1038/s41467-018-06412-w
work_keys_str_mv AT modicka resonanttorsionmagnetometryinanisotropicquantummaterials
AT bachmannmajad resonanttorsionmagnetometryinanisotropicquantummaterials
AT ramshawbj resonanttorsionmagnetometryinanisotropicquantummaterials
AT arnoldf resonanttorsionmagnetometryinanisotropicquantummaterials
AT shirerkr resonanttorsionmagnetometryinanisotropicquantummaterials
AT estryamelia resonanttorsionmagnetometryinanisotropicquantummaterials
AT bettsjb resonanttorsionmagnetometryinanisotropicquantummaterials
AT ghimirenirmalj resonanttorsionmagnetometryinanisotropicquantummaterials
AT bauered resonanttorsionmagnetometryinanisotropicquantummaterials
AT schmidtmarcus resonanttorsionmagnetometryinanisotropicquantummaterials
AT baenitzmichael resonanttorsionmagnetometryinanisotropicquantummaterials
AT svanidzee resonanttorsionmagnetometryinanisotropicquantummaterials
AT mcdonaldrossd resonanttorsionmagnetometryinanisotropicquantummaterials
AT shekhterarkady resonanttorsionmagnetometryinanisotropicquantummaterials
AT mollphilipjw resonanttorsionmagnetometryinanisotropicquantummaterials