Cargando…
Resonant torsion magnetometry in anisotropic quantum materials
Unusual behavior in quantum materials commonly arises from their effective low-dimensional physics, reflecting the underlying anisotropy in the spin and charge degrees of freedom. Here we introduce the magnetotropic coefficient k = ∂(2)F/∂θ(2), the second derivative of the free energy F with respect...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162279/ https://www.ncbi.nlm.nih.gov/pubmed/30266902 http://dx.doi.org/10.1038/s41467-018-06412-w |
_version_ | 1783359109264834560 |
---|---|
author | Modic, K. A. Bachmann, Maja D. Ramshaw, B. J. Arnold, F. Shirer, K. R. Estry, Amelia Betts, J. B. Ghimire, Nirmal J. Bauer, E. D. Schmidt, Marcus Baenitz, Michael Svanidze, E. McDonald, Ross D. Shekhter, Arkady Moll, Philip J. W. |
author_facet | Modic, K. A. Bachmann, Maja D. Ramshaw, B. J. Arnold, F. Shirer, K. R. Estry, Amelia Betts, J. B. Ghimire, Nirmal J. Bauer, E. D. Schmidt, Marcus Baenitz, Michael Svanidze, E. McDonald, Ross D. Shekhter, Arkady Moll, Philip J. W. |
author_sort | Modic, K. A. |
collection | PubMed |
description | Unusual behavior in quantum materials commonly arises from their effective low-dimensional physics, reflecting the underlying anisotropy in the spin and charge degrees of freedom. Here we introduce the magnetotropic coefficient k = ∂(2)F/∂θ(2), the second derivative of the free energy F with respect to the magnetic field orientation θ in the crystal. We show that the magnetotropic coefficient can be quantitatively determined from a shift in the resonant frequency of a commercially available atomic force microscopy cantilever under magnetic field. This detection method enables part per 100 million sensitivity and the ability to measure magnetic anisotropy in nanogram-scale samples, as demonstrated on the Weyl semimetal NbP. Measurement of the magnetotropic coefficient in the spin-liquid candidate RuCl(3) highlights its sensitivity to anisotropic phase transitions and allows a quantitative comparison to other thermodynamic coefficients via the Ehrenfest relations. |
format | Online Article Text |
id | pubmed-6162279 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61622792018-10-01 Resonant torsion magnetometry in anisotropic quantum materials Modic, K. A. Bachmann, Maja D. Ramshaw, B. J. Arnold, F. Shirer, K. R. Estry, Amelia Betts, J. B. Ghimire, Nirmal J. Bauer, E. D. Schmidt, Marcus Baenitz, Michael Svanidze, E. McDonald, Ross D. Shekhter, Arkady Moll, Philip J. W. Nat Commun Article Unusual behavior in quantum materials commonly arises from their effective low-dimensional physics, reflecting the underlying anisotropy in the spin and charge degrees of freedom. Here we introduce the magnetotropic coefficient k = ∂(2)F/∂θ(2), the second derivative of the free energy F with respect to the magnetic field orientation θ in the crystal. We show that the magnetotropic coefficient can be quantitatively determined from a shift in the resonant frequency of a commercially available atomic force microscopy cantilever under magnetic field. This detection method enables part per 100 million sensitivity and the ability to measure magnetic anisotropy in nanogram-scale samples, as demonstrated on the Weyl semimetal NbP. Measurement of the magnetotropic coefficient in the spin-liquid candidate RuCl(3) highlights its sensitivity to anisotropic phase transitions and allows a quantitative comparison to other thermodynamic coefficients via the Ehrenfest relations. Nature Publishing Group UK 2018-09-28 /pmc/articles/PMC6162279/ /pubmed/30266902 http://dx.doi.org/10.1038/s41467-018-06412-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Modic, K. A. Bachmann, Maja D. Ramshaw, B. J. Arnold, F. Shirer, K. R. Estry, Amelia Betts, J. B. Ghimire, Nirmal J. Bauer, E. D. Schmidt, Marcus Baenitz, Michael Svanidze, E. McDonald, Ross D. Shekhter, Arkady Moll, Philip J. W. Resonant torsion magnetometry in anisotropic quantum materials |
title | Resonant torsion magnetometry in anisotropic quantum materials |
title_full | Resonant torsion magnetometry in anisotropic quantum materials |
title_fullStr | Resonant torsion magnetometry in anisotropic quantum materials |
title_full_unstemmed | Resonant torsion magnetometry in anisotropic quantum materials |
title_short | Resonant torsion magnetometry in anisotropic quantum materials |
title_sort | resonant torsion magnetometry in anisotropic quantum materials |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162279/ https://www.ncbi.nlm.nih.gov/pubmed/30266902 http://dx.doi.org/10.1038/s41467-018-06412-w |
work_keys_str_mv | AT modicka resonanttorsionmagnetometryinanisotropicquantummaterials AT bachmannmajad resonanttorsionmagnetometryinanisotropicquantummaterials AT ramshawbj resonanttorsionmagnetometryinanisotropicquantummaterials AT arnoldf resonanttorsionmagnetometryinanisotropicquantummaterials AT shirerkr resonanttorsionmagnetometryinanisotropicquantummaterials AT estryamelia resonanttorsionmagnetometryinanisotropicquantummaterials AT bettsjb resonanttorsionmagnetometryinanisotropicquantummaterials AT ghimirenirmalj resonanttorsionmagnetometryinanisotropicquantummaterials AT bauered resonanttorsionmagnetometryinanisotropicquantummaterials AT schmidtmarcus resonanttorsionmagnetometryinanisotropicquantummaterials AT baenitzmichael resonanttorsionmagnetometryinanisotropicquantummaterials AT svanidzee resonanttorsionmagnetometryinanisotropicquantummaterials AT mcdonaldrossd resonanttorsionmagnetometryinanisotropicquantummaterials AT shekhterarkady resonanttorsionmagnetometryinanisotropicquantummaterials AT mollphilipjw resonanttorsionmagnetometryinanisotropicquantummaterials |