Cargando…

An Afferent Neuropeptide System Transmits Mechanosensory Signals Triggering Sensitization and Arousal in C. elegans

Sensitization is a simple form of behavioral plasticity by which an initial stimulus, often signaling danger, leads to increased responsiveness to subsequent stimuli. Cross-modal sensitization is an important feature of arousal in many organisms, yet its molecular and neural mechanisms are incomplet...

Descripción completa

Detalles Bibliográficos
Autores principales: Chew, Yee Lian, Tanizawa, Yoshinori, Cho, Yongmin, Zhao, Buyun, Yu, Alex J., Ardiel, Evan L., Rabinowitch, Ithai, Bai, Jihong, Rankin, Catharine H., Lu, Hang, Beets, Isabel, Schafer, William R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162336/
https://www.ncbi.nlm.nih.gov/pubmed/30146306
http://dx.doi.org/10.1016/j.neuron.2018.08.003
Descripción
Sumario:Sensitization is a simple form of behavioral plasticity by which an initial stimulus, often signaling danger, leads to increased responsiveness to subsequent stimuli. Cross-modal sensitization is an important feature of arousal in many organisms, yet its molecular and neural mechanisms are incompletely understood. Here we show that in C. elegans, aversive mechanical stimuli lead to both enhanced locomotor activity and sensitization of aversive chemosensory pathways. Both locomotor arousal and cross-modal sensitization depend on the release of FLP-20 neuropeptides from primary mechanosensory neurons and on their receptor FRPR-3. Surprisingly, the critical site of action of FRPR-3 for both sensory and locomotor arousal is RID, a single neuroendocrine cell specialized for the release of neuropeptides that responds to mechanical stimuli in a FLP-20-dependent manner. Thus, FLP-20 peptides function as an afferent arousal signal that conveys mechanosensory information to central neurons that modulate arousal and other behavioral states. VIDEO ABSTRACT: