Cargando…
CX-4945 Induces Methuosis in Cholangiocarcinoma Cell Lines by a CK2-Independent Mechanism
Cholangiocarcinoma is a disease with a poor prognosis and increasing incidence and hence there is a pressing unmet clinical need for new adjuvant treatments. Protein kinase CK2 (previously casein kinase II) is a ubiquitously expressed protein kinase that is up-regulated in multiple cancer cell types...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162756/ https://www.ncbi.nlm.nih.gov/pubmed/30142881 http://dx.doi.org/10.3390/cancers10090283 |
_version_ | 1783359213302448128 |
---|---|
author | Lertsuwan, Jomnarong Lertsuwan, Kornkamon Sawasdichai, Anyaporn Tasnawijitwong, Nathapol Lee, Ka Ying Kitchen, Philip Afford, Simon Gaston, Kevin Jayaraman, Padma-Sheela Satayavivad, Jutamaad |
author_facet | Lertsuwan, Jomnarong Lertsuwan, Kornkamon Sawasdichai, Anyaporn Tasnawijitwong, Nathapol Lee, Ka Ying Kitchen, Philip Afford, Simon Gaston, Kevin Jayaraman, Padma-Sheela Satayavivad, Jutamaad |
author_sort | Lertsuwan, Jomnarong |
collection | PubMed |
description | Cholangiocarcinoma is a disease with a poor prognosis and increasing incidence and hence there is a pressing unmet clinical need for new adjuvant treatments. Protein kinase CK2 (previously casein kinase II) is a ubiquitously expressed protein kinase that is up-regulated in multiple cancer cell types. The inhibition of CK2 activity using CX-4945 (Silmitasertib) has been proposed as a novel treatment in multiple disease settings including cholangiocarcinoma. Here, we show that CX-4945 inhibited the proliferation of cholangiocarcinoma cell lines in vitro. Moreover, CX-4945 treatment induced the formation of cytosolic vacuoles in cholangiocarcinoma cell lines and other cancer cell lines. The vacuoles contained extracellular fluid and had neutral pH, features characteristic of methuosis. In contrast, simultaneous knockdown of both the α and α′ catalytic subunits of protein kinase CK2 using small interfering RNA (siRNA) had little or no effect on the proliferation of cholangiocarcinoma cell lines and failed to induce the vacuole formation. Surprisingly, low doses of CX-4945 increased the invasive properties of cholangiocarcinoma cells due to an upregulation of matrix metallopeptidase 7 (MMP-7), while the knockdown of CK2 inhibited cell invasion. Our data suggest that CX-4945 inhibits cell proliferation and induces cell death via CK2-independent pathways. Moreover, the increase in cell invasion brought about by CX-4945 treatment suggests that this drug might increase tumor invasion in clinical settings. |
format | Online Article Text |
id | pubmed-6162756 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61627562018-10-02 CX-4945 Induces Methuosis in Cholangiocarcinoma Cell Lines by a CK2-Independent Mechanism Lertsuwan, Jomnarong Lertsuwan, Kornkamon Sawasdichai, Anyaporn Tasnawijitwong, Nathapol Lee, Ka Ying Kitchen, Philip Afford, Simon Gaston, Kevin Jayaraman, Padma-Sheela Satayavivad, Jutamaad Cancers (Basel) Article Cholangiocarcinoma is a disease with a poor prognosis and increasing incidence and hence there is a pressing unmet clinical need for new adjuvant treatments. Protein kinase CK2 (previously casein kinase II) is a ubiquitously expressed protein kinase that is up-regulated in multiple cancer cell types. The inhibition of CK2 activity using CX-4945 (Silmitasertib) has been proposed as a novel treatment in multiple disease settings including cholangiocarcinoma. Here, we show that CX-4945 inhibited the proliferation of cholangiocarcinoma cell lines in vitro. Moreover, CX-4945 treatment induced the formation of cytosolic vacuoles in cholangiocarcinoma cell lines and other cancer cell lines. The vacuoles contained extracellular fluid and had neutral pH, features characteristic of methuosis. In contrast, simultaneous knockdown of both the α and α′ catalytic subunits of protein kinase CK2 using small interfering RNA (siRNA) had little or no effect on the proliferation of cholangiocarcinoma cell lines and failed to induce the vacuole formation. Surprisingly, low doses of CX-4945 increased the invasive properties of cholangiocarcinoma cells due to an upregulation of matrix metallopeptidase 7 (MMP-7), while the knockdown of CK2 inhibited cell invasion. Our data suggest that CX-4945 inhibits cell proliferation and induces cell death via CK2-independent pathways. Moreover, the increase in cell invasion brought about by CX-4945 treatment suggests that this drug might increase tumor invasion in clinical settings. MDPI 2018-08-23 /pmc/articles/PMC6162756/ /pubmed/30142881 http://dx.doi.org/10.3390/cancers10090283 Text en © 2018 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Lertsuwan, Jomnarong Lertsuwan, Kornkamon Sawasdichai, Anyaporn Tasnawijitwong, Nathapol Lee, Ka Ying Kitchen, Philip Afford, Simon Gaston, Kevin Jayaraman, Padma-Sheela Satayavivad, Jutamaad CX-4945 Induces Methuosis in Cholangiocarcinoma Cell Lines by a CK2-Independent Mechanism |
title | CX-4945 Induces Methuosis in Cholangiocarcinoma Cell Lines by a CK2-Independent Mechanism |
title_full | CX-4945 Induces Methuosis in Cholangiocarcinoma Cell Lines by a CK2-Independent Mechanism |
title_fullStr | CX-4945 Induces Methuosis in Cholangiocarcinoma Cell Lines by a CK2-Independent Mechanism |
title_full_unstemmed | CX-4945 Induces Methuosis in Cholangiocarcinoma Cell Lines by a CK2-Independent Mechanism |
title_short | CX-4945 Induces Methuosis in Cholangiocarcinoma Cell Lines by a CK2-Independent Mechanism |
title_sort | cx-4945 induces methuosis in cholangiocarcinoma cell lines by a ck2-independent mechanism |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162756/ https://www.ncbi.nlm.nih.gov/pubmed/30142881 http://dx.doi.org/10.3390/cancers10090283 |
work_keys_str_mv | AT lertsuwanjomnarong cx4945inducesmethuosisincholangiocarcinomacelllinesbyack2independentmechanism AT lertsuwankornkamon cx4945inducesmethuosisincholangiocarcinomacelllinesbyack2independentmechanism AT sawasdichaianyaporn cx4945inducesmethuosisincholangiocarcinomacelllinesbyack2independentmechanism AT tasnawijitwongnathapol cx4945inducesmethuosisincholangiocarcinomacelllinesbyack2independentmechanism AT leekaying cx4945inducesmethuosisincholangiocarcinomacelllinesbyack2independentmechanism AT kitchenphilip cx4945inducesmethuosisincholangiocarcinomacelllinesbyack2independentmechanism AT affordsimon cx4945inducesmethuosisincholangiocarcinomacelllinesbyack2independentmechanism AT gastonkevin cx4945inducesmethuosisincholangiocarcinomacelllinesbyack2independentmechanism AT jayaramanpadmasheela cx4945inducesmethuosisincholangiocarcinomacelllinesbyack2independentmechanism AT satayavivadjutamaad cx4945inducesmethuosisincholangiocarcinomacelllinesbyack2independentmechanism |