Cargando…
Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata
Candida glabrata has thoroughly adapted to successfully colonize human mucosal membranes and survive in vivo pressures. prior to and during antifungal treatment. Out of all the medically relevant Candida species, C. glabrata has emerged as a leading cause of azole, echinocandin, and multidrug (MDR:...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162769/ https://www.ncbi.nlm.nih.gov/pubmed/30200517 http://dx.doi.org/10.3390/jof4030105 |
_version_ | 1783359216359047168 |
---|---|
author | Healey, Kelley R. Perlin, David S. |
author_facet | Healey, Kelley R. Perlin, David S. |
author_sort | Healey, Kelley R. |
collection | PubMed |
description | Candida glabrata has thoroughly adapted to successfully colonize human mucosal membranes and survive in vivo pressures. prior to and during antifungal treatment. Out of all the medically relevant Candida species, C. glabrata has emerged as a leading cause of azole, echinocandin, and multidrug (MDR: azole + echinocandin) adaptive resistance. Neither mechanism of resistance is intrinsic to C. glabrata, since stable genetic resistance depends on mutation of drug target genes, FKS1 and FKS2 (echinocandin resistance), and a transcription factor, PDR1, which controls expression of major drug transporters, such as CDR1 (azole resistance). However, another hallmark of C. glabrata is the ability to withstand drug pressure both in vitro and in vivo prior to stable “genetic escape”. Additionally, these resistance events can arise within individual patients, which underscores the importance of understanding how this fungus is adapting to its environment and to drug exposure in vivo. Here, we explore the evolution of echinocandin resistance as a multistep model that includes general cell stress, drug adaptation (tolerance), and genetic escape. The extensive genetic diversity reported in C. glabrata is highlighted. |
format | Online Article Text |
id | pubmed-6162769 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61627692018-10-09 Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata Healey, Kelley R. Perlin, David S. J Fungi (Basel) Review Candida glabrata has thoroughly adapted to successfully colonize human mucosal membranes and survive in vivo pressures. prior to and during antifungal treatment. Out of all the medically relevant Candida species, C. glabrata has emerged as a leading cause of azole, echinocandin, and multidrug (MDR: azole + echinocandin) adaptive resistance. Neither mechanism of resistance is intrinsic to C. glabrata, since stable genetic resistance depends on mutation of drug target genes, FKS1 and FKS2 (echinocandin resistance), and a transcription factor, PDR1, which controls expression of major drug transporters, such as CDR1 (azole resistance). However, another hallmark of C. glabrata is the ability to withstand drug pressure both in vitro and in vivo prior to stable “genetic escape”. Additionally, these resistance events can arise within individual patients, which underscores the importance of understanding how this fungus is adapting to its environment and to drug exposure in vivo. Here, we explore the evolution of echinocandin resistance as a multistep model that includes general cell stress, drug adaptation (tolerance), and genetic escape. The extensive genetic diversity reported in C. glabrata is highlighted. MDPI 2018-09-01 /pmc/articles/PMC6162769/ /pubmed/30200517 http://dx.doi.org/10.3390/jof4030105 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Healey, Kelley R. Perlin, David S. Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata |
title | Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata |
title_full | Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata |
title_fullStr | Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata |
title_full_unstemmed | Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata |
title_short | Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata |
title_sort | fungal resistance to echinocandins and the mdr phenomenon in candida glabrata |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162769/ https://www.ncbi.nlm.nih.gov/pubmed/30200517 http://dx.doi.org/10.3390/jof4030105 |
work_keys_str_mv | AT healeykelleyr fungalresistancetoechinocandinsandthemdrphenomenonincandidaglabrata AT perlindavids fungalresistancetoechinocandinsandthemdrphenomenonincandidaglabrata |