Cargando…
Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network
BACKGROUND: Conventional methods of motor imagery brain computer interfaces (MI-BCIs) suffer from the limited number of samples and simplified features, so as to produce poor performances with spatial-frequency features and shallow classifiers. METHODS: Alternatively, this paper applies a deep recur...
Autores principales: | Luo, Tian-jian, Zhou, Chang-le, Chao, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162908/ https://www.ncbi.nlm.nih.gov/pubmed/30268089 http://dx.doi.org/10.1186/s12859-018-2365-1 |
Ejemplares similares
-
Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network
por: Miao, Minmin, et al.
Publicado: (2020) -
EEG oscillatory patterns and classification of sequential compound limb motor imagery
por: Yi, Weibo, et al.
Publicado: (2016) -
EEG channel selection based on sequential backward floating search for motor imagery classification
por: Tang, Chao, et al.
Publicado: (2022) -
A Neural Network-Based Optimal Spatial Filter Design Method for Motor Imagery Classification
por: Yuksel, Ayhan, et al.
Publicado: (2015) -
Motor imagery electroencephalogram classification algorithm based on joint features in the spatial and frequency domains and instance transfer
por: Wang, Ximiao, et al.
Publicado: (2023)