Cargando…
Assessing bird avoidance of high-contrast lights using a choice test approach: implications for reducing human-induced avian mortality
BACKGROUND: Avian collisions with man-made objects and vehicles (e.g., buildings, cars, airplanes, power lines) have increased recently. Lights have been proposed to alert birds and minimize the chances of collisions, but it is challenging to choose lights that are tuned to the avian eye and can als...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163032/ https://www.ncbi.nlm.nih.gov/pubmed/30280013 http://dx.doi.org/10.7717/peerj.5404 |
_version_ | 1783359278100250624 |
---|---|
author | Goller, Benjamin Blackwell, Bradley F. DeVault, Travis L. Baumhardt, Patrice E. Fernández-Juricic, Esteban |
author_facet | Goller, Benjamin Blackwell, Bradley F. DeVault, Travis L. Baumhardt, Patrice E. Fernández-Juricic, Esteban |
author_sort | Goller, Benjamin |
collection | PubMed |
description | BACKGROUND: Avian collisions with man-made objects and vehicles (e.g., buildings, cars, airplanes, power lines) have increased recently. Lights have been proposed to alert birds and minimize the chances of collisions, but it is challenging to choose lights that are tuned to the avian eye and can also lead to avoidance given the differences between human and avian vision. We propose a choice test to address this problem by first identifying wavelengths of light that would over-stimulate the retina using species-specific perceptual models and by then assessing the avoidance/attraction responses of brown-headed cowbirds to these lights during daytime using a behavioral assay. METHODS: We used perceptual models to estimate wavelength-specific light emitting diode (LED) lights with high chromatic contrast. The behavioral assay consisted of an arena where the bird moved in a single direction and was forced to make a choice (right/left) using a single-choice design (one side with the light on, the other with the light off) under diurnal light conditions. RESULTS: First, we identified lights with high saliency from the cowbird visual perspective: LED lights with peaks at 380 nm (ultraviolet), 470 nm (blue), 525 nm (green), 630 nm (red), and broad-spectrum (white) LED lights. Second, we found that cowbirds significantly avoided LED lights with peaks at 470 and 630 nm, but did not avoid or prefer LED lights with peaks at 380 and 525 nm or white lights. DISCUSSION: The two lights avoided had the highest chromatic contrast but relatively lower levels of achromatic contrast. Our approach can optimize limited resources to narrow down wavelengths of light with high visual saliency for a target species leading to avoidance. These lights can be used as candidates for visual deterrents to reduce collisions with man-made objects and vehicles. |
format | Online Article Text |
id | pubmed-6163032 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61630322018-10-02 Assessing bird avoidance of high-contrast lights using a choice test approach: implications for reducing human-induced avian mortality Goller, Benjamin Blackwell, Bradley F. DeVault, Travis L. Baumhardt, Patrice E. Fernández-Juricic, Esteban PeerJ Animal Behavior BACKGROUND: Avian collisions with man-made objects and vehicles (e.g., buildings, cars, airplanes, power lines) have increased recently. Lights have been proposed to alert birds and minimize the chances of collisions, but it is challenging to choose lights that are tuned to the avian eye and can also lead to avoidance given the differences between human and avian vision. We propose a choice test to address this problem by first identifying wavelengths of light that would over-stimulate the retina using species-specific perceptual models and by then assessing the avoidance/attraction responses of brown-headed cowbirds to these lights during daytime using a behavioral assay. METHODS: We used perceptual models to estimate wavelength-specific light emitting diode (LED) lights with high chromatic contrast. The behavioral assay consisted of an arena where the bird moved in a single direction and was forced to make a choice (right/left) using a single-choice design (one side with the light on, the other with the light off) under diurnal light conditions. RESULTS: First, we identified lights with high saliency from the cowbird visual perspective: LED lights with peaks at 380 nm (ultraviolet), 470 nm (blue), 525 nm (green), 630 nm (red), and broad-spectrum (white) LED lights. Second, we found that cowbirds significantly avoided LED lights with peaks at 470 and 630 nm, but did not avoid or prefer LED lights with peaks at 380 and 525 nm or white lights. DISCUSSION: The two lights avoided had the highest chromatic contrast but relatively lower levels of achromatic contrast. Our approach can optimize limited resources to narrow down wavelengths of light with high visual saliency for a target species leading to avoidance. These lights can be used as candidates for visual deterrents to reduce collisions with man-made objects and vehicles. PeerJ Inc. 2018-09-26 /pmc/articles/PMC6163032/ /pubmed/30280013 http://dx.doi.org/10.7717/peerj.5404 Text en © 2018 Goller et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Animal Behavior Goller, Benjamin Blackwell, Bradley F. DeVault, Travis L. Baumhardt, Patrice E. Fernández-Juricic, Esteban Assessing bird avoidance of high-contrast lights using a choice test approach: implications for reducing human-induced avian mortality |
title | Assessing bird avoidance of high-contrast lights using a choice test approach: implications for reducing human-induced avian mortality |
title_full | Assessing bird avoidance of high-contrast lights using a choice test approach: implications for reducing human-induced avian mortality |
title_fullStr | Assessing bird avoidance of high-contrast lights using a choice test approach: implications for reducing human-induced avian mortality |
title_full_unstemmed | Assessing bird avoidance of high-contrast lights using a choice test approach: implications for reducing human-induced avian mortality |
title_short | Assessing bird avoidance of high-contrast lights using a choice test approach: implications for reducing human-induced avian mortality |
title_sort | assessing bird avoidance of high-contrast lights using a choice test approach: implications for reducing human-induced avian mortality |
topic | Animal Behavior |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163032/ https://www.ncbi.nlm.nih.gov/pubmed/30280013 http://dx.doi.org/10.7717/peerj.5404 |
work_keys_str_mv | AT gollerbenjamin assessingbirdavoidanceofhighcontrastlightsusingachoicetestapproachimplicationsforreducinghumaninducedavianmortality AT blackwellbradleyf assessingbirdavoidanceofhighcontrastlightsusingachoicetestapproachimplicationsforreducinghumaninducedavianmortality AT devaulttravisl assessingbirdavoidanceofhighcontrastlightsusingachoicetestapproachimplicationsforreducinghumaninducedavianmortality AT baumhardtpatricee assessingbirdavoidanceofhighcontrastlightsusingachoicetestapproachimplicationsforreducinghumaninducedavianmortality AT fernandezjuricicesteban assessingbirdavoidanceofhighcontrastlightsusingachoicetestapproachimplicationsforreducinghumaninducedavianmortality |