Cargando…

Biomechanical properties of adjustable extracortical graft fixations in ACL reconstruction

BACKGROUND: Reliable biomechanical data about the strength of different tibial extracortical graft fixation devices is sparse. This biomechanical study compares the properties of tibial graft fixation in ACL reconstruction with either the ACL Tight Rope™ or the Rigid Loop Adjustable™ device. The hyp...

Descripción completa

Detalles Bibliográficos
Autores principales: Ettinger, M., Karkosch, R., Horstmann, H., Savov, P., Calliess, T., Smith, T., Petri, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163122/
https://www.ncbi.nlm.nih.gov/pubmed/30269194
http://dx.doi.org/10.1186/s40634-018-0154-4
Descripción
Sumario:BACKGROUND: Reliable biomechanical data about the strength of different tibial extracortical graft fixation devices is sparse. This biomechanical study compares the properties of tibial graft fixation in ACL reconstruction with either the ACL Tight Rope™ or the Rigid Loop Adjustable™ device. The hypothesis was that both fixation devices would provide comparable results concerning gap formation during cyclic loading and ultimate failure load. METHODS: Sixteen sawbone tibiae (Sawbones™) underwent extracortical fixation of porcine flexor digitorum profundus grafts for ACL reconstruction. Either the ACL Tight Rope™ (Arthrex) or the Rigid Loop Adjustable™ (DePuy Mitek) fixation device were used, resulting in 2 groups with 8 specimens per group. Biomechanical analysis included pretensioning the constructs 10 times with 0.75 Hz, then cyclic loading of 1,000 position-controlled cycles and 1,000 force-controlled cycles applied with a servohydraulic testing machine. Elongation during cyclic loading was recorded. After this, ultimate failure load and failure mode analysis were performed. RESULTS: No statistically significant difference could be noted between the groups regarding gap formation during cyclic loading (4.6 ± 2.6 mm for the Rigid Loop Adjustable™ vs. 6.6 ± 1.5 mm for the ACL Tight Rope™ (p > 0.05)), and ultimate failure loads (980 ± 101.9 N for the Rigid Loop Adjustable™ vs. 861 ± 115 N ACL Tight Rope™ (p > 0.05)). CONCLUSION: ACL Tight Rope™ and the Rigid Loop Adjustable™ fixation devices yield comparable biomechanical results for tibial extracortical graft fixation in ACL reconstruction. These findings may be of relevance for the future surgical decision-making in ACL reconstruction. Randomized controlled clinical trials comparing both fixation devices are desirable for the future.