Cargando…
The Apoptosis Effect on Liver Cancer Cells of Gold Nanoparticles Modified with Lithocholic Acid
Functionalized gold nanoparticles (AuNPs) have widely applied in many fields, due to their good biocompatibility, a long drug half-life, and their bioactivity is related to their size and the modified ligands on their surface. Here, we synthesized the AuNPs capped with ligands that possess polyethyl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163124/ https://www.ncbi.nlm.nih.gov/pubmed/30269179 http://dx.doi.org/10.1186/s11671-018-2653-8 |
Sumario: | Functionalized gold nanoparticles (AuNPs) have widely applied in many fields, due to their good biocompatibility, a long drug half-life, and their bioactivity is related to their size and the modified ligands on their surface. Here, we synthesized the AuNPs capped with ligands that possess polyethylene glycol (PEG) and lithocholic acid (LCA) linked by carboxyl groups (AuNP@MPA-PEG-LCA). Our cytotoxicity results indicated that AuNP@MPA-PEG-LCA have better cell selectivity; in other words, it could inhibit the growth of multiple liver cancer cells more effectively than other cancer cells and normal cells. Apoptosis plays a role in AuNP@MPA-PEG-LCA inhibition cell proliferation, which was convincingly proved by some apoptotic index experiments, such as nuclear staining, annexin V-FITC, mitochondrial membrane potential (MMP) analysis, and AO/EB staining experiments. The most potent AuNP@MPA-PEG-LCA were confirmed to efficiently induce apoptosis through a reactive oxygen species (ROS) mediating mitochondrial dysfunction. And AuNP@MPA-PEG-LCA could be more effective in promoting programmed cell death of liver cancer cells. |
---|