Cargando…
Predicting Spatial Variations in Soil Nutrients with Hyperspectral Remote Sensing at Regional Scale
Rapid acquisition of the spatial distribution of soil nutrients holds great implications for farmland soil productivity safety, food security and agricultural management. To this end, we collected 1297 soil samples and measured the content of soil total nitrogen (TN), soil available phosphorus (AP)...
Autores principales: | Song, Ying-Qiang, Zhao, Xin, Su, Hui-Yue, Li, Bo, Hu, Yue-Ming, Cui, Xue-Sen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163195/ https://www.ncbi.nlm.nih.gov/pubmed/30217092 http://dx.doi.org/10.3390/s18093086 |
Ejemplares similares
-
Estimation of Soil Arsenic Content with Hyperspectral Remote Sensing
por: Wei, Lifei, et al.
Publicado: (2020) -
Spectral-spatial classification of hyperspectral remote sensing images
por: Benediktsson, Jon Atli, et al.
Publicado: (2015) -
Hyperspectral remote sensing: theory and applications
por: Pandey, Prem Chandra, et al.
Publicado: (2020) -
Spatial Spectral Band Selection for Enhanced Hyperspectral Remote Sensing Classification Applications
por: Torres, Ruben Moya, et al.
Publicado: (2020) -
Remote Sensing Performance Enhancement in Hyperspectral Images
por: Kwan, Chiman
Publicado: (2018)