Cargando…
Automatic Calibration of Odometry and Robot Extrinsic Parameters Using Multi-Composite-Targets for a Differential-Drive Robot with a Camera
This paper simultaneously calibrates odometry parameters and the relative pose between a monocular camera and a robot automatically. Most camera pose estimation methods use natural features or artificial landmark tools. However, there are mismatches and scale ambiguity for natural features; the larg...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163215/ https://www.ncbi.nlm.nih.gov/pubmed/30223495 http://dx.doi.org/10.3390/s18093097 |
Sumario: | This paper simultaneously calibrates odometry parameters and the relative pose between a monocular camera and a robot automatically. Most camera pose estimation methods use natural features or artificial landmark tools. However, there are mismatches and scale ambiguity for natural features; the large-scale precision landmark tool is also challenging to make. To solve these problems, we propose an automatic process to combine multiple composite targets, select keyframes, and estimate keyframe poses. The composite target consists of an aruco marker and a checkerboard pattern. First, an analytical method is applied to obtain initial values of all calibration parameters; prior knowledge of the calibration parameters is not required. Then, two optimization steps are used to refine the calibration parameters. Planar motion constraints of the camera are introduced in these optimizations. The proposed solution is automatic; manual selection of keyframes, initial values, and robot construction within a specific trajectory are not required. The competing accuracy and stability of the proposed method under different target placements and robot paths are tested experimentally. Positive effects on calibration accuracy and stability are obtained when (1) composite targets are adopted; (2) two optimization steps are used; (3) plane motion constraints are introduced; and (4) target numbers are increased. |
---|