Cargando…

Recombinant Escherichia coli BL21-pET28a-egfp Cultivated with Nanomaterials in a Modified Microchannel for Biofilm Formation

The application of whole cells as catalytic biofilms in microchannels has attracted increasing scientific interest. However, the excessive biomass formation and structure of biofilms in a reactor limits their use. A microchannel reactor with surface modification was used to colonize recombinant Esch...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Chang-Tong, Mei, Yi-Yuan, Zhu, Lin-Lin, Xu, Yan, Sheng, Sheng, Wang, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163294/
https://www.ncbi.nlm.nih.gov/pubmed/30200345
http://dx.doi.org/10.3390/ijms19092590
Descripción
Sumario:The application of whole cells as catalytic biofilms in microchannels has attracted increasing scientific interest. However, the excessive biomass formation and structure of biofilms in a reactor limits their use. A microchannel reactor with surface modification was used to colonize recombinant Escherichia coil BL21-pET28a-egfp rapidly and accelerated growth of biofilms in the microchannel. The segmented flow system of ‘air/culture medium containing nanomaterials’ was firstly used to modulate the biofilms formation of recombinant E. coil; the inhibitory effects of nanomaterials on biofilm formation were investigated. The results indicated that the segmental flow mode has a significant impact on the structure and development of biofilms. Using the channels modified by silane reagent, the culture time of biofilms (30 h) was reduced by 6 h compared to unmodified channels. With the addition of graphene sheets (10 mg/L) in Luria-Bertani (LB) medium, the graphene sheets possessed a minimum inhibition rate of 3.23% against recombinant E. coil. The biofilms cultivated by the LB medium with added graphene sheets were stably formed in 20 h; the formation time was 33.33% shorter than that by LB medium without graphene. The developed method provides an efficient and simple approach for rapid preparation of catalytic biofilms in microchannel reactors.