Cargando…
Digital Image Tamper Detection Technique Based on Spectrum Analysis of CFA Artifacts
Existence of mobile devices with high performance cameras and powerful image processing applications eases the alteration of digital images for malicious purposes. This work presents a new approach to detect digital image tamper detection technique based on CFA artifacts arising from the differences...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163339/ https://www.ncbi.nlm.nih.gov/pubmed/30149640 http://dx.doi.org/10.3390/s18092804 |
_version_ | 1783359337110962176 |
---|---|
author | González Fernández, Edgar Sandoval Orozco, Ana Lucila García Villalba, Luis Javier Hernandez-Castro, Julio |
author_facet | González Fernández, Edgar Sandoval Orozco, Ana Lucila García Villalba, Luis Javier Hernandez-Castro, Julio |
author_sort | González Fernández, Edgar |
collection | PubMed |
description | Existence of mobile devices with high performance cameras and powerful image processing applications eases the alteration of digital images for malicious purposes. This work presents a new approach to detect digital image tamper detection technique based on CFA artifacts arising from the differences in the distribution of acquired and interpolated pixels. The experimental evidence supports the capabilities of the proposed method for detecting a broad range of manipulations, e.g., copy-move, resizing, rotation, filtering and colorization. This technique exhibits tampered areas by computing the probability of each pixel of being interpolated and then applying the DCT on small blocks of the probability map. The value of the coefficient for the highest frequency on each block is used to decide whether the analyzed region has been tampered or not. The results shown here were obtained from tests made on a publicly available dataset of tampered images for forensic analysis. Affected zones are clearly highlighted if the method detects CFA inconsistencies. The analysis can be considered successful if the modified zone, or an important part of it, is accurately detected. By analizing a publicly available dataset with images modified with different methods we reach an 86% of accuracy, which provides a good result for a method that does not require previous training. |
format | Online Article Text |
id | pubmed-6163339 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61633392018-10-10 Digital Image Tamper Detection Technique Based on Spectrum Analysis of CFA Artifacts González Fernández, Edgar Sandoval Orozco, Ana Lucila García Villalba, Luis Javier Hernandez-Castro, Julio Sensors (Basel) Article Existence of mobile devices with high performance cameras and powerful image processing applications eases the alteration of digital images for malicious purposes. This work presents a new approach to detect digital image tamper detection technique based on CFA artifacts arising from the differences in the distribution of acquired and interpolated pixels. The experimental evidence supports the capabilities of the proposed method for detecting a broad range of manipulations, e.g., copy-move, resizing, rotation, filtering and colorization. This technique exhibits tampered areas by computing the probability of each pixel of being interpolated and then applying the DCT on small blocks of the probability map. The value of the coefficient for the highest frequency on each block is used to decide whether the analyzed region has been tampered or not. The results shown here were obtained from tests made on a publicly available dataset of tampered images for forensic analysis. Affected zones are clearly highlighted if the method detects CFA inconsistencies. The analysis can be considered successful if the modified zone, or an important part of it, is accurately detected. By analizing a publicly available dataset with images modified with different methods we reach an 86% of accuracy, which provides a good result for a method that does not require previous training. MDPI 2018-08-25 /pmc/articles/PMC6163339/ /pubmed/30149640 http://dx.doi.org/10.3390/s18092804 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article González Fernández, Edgar Sandoval Orozco, Ana Lucila García Villalba, Luis Javier Hernandez-Castro, Julio Digital Image Tamper Detection Technique Based on Spectrum Analysis of CFA Artifacts |
title | Digital Image Tamper Detection Technique Based on Spectrum Analysis of CFA Artifacts |
title_full | Digital Image Tamper Detection Technique Based on Spectrum Analysis of CFA Artifacts |
title_fullStr | Digital Image Tamper Detection Technique Based on Spectrum Analysis of CFA Artifacts |
title_full_unstemmed | Digital Image Tamper Detection Technique Based on Spectrum Analysis of CFA Artifacts |
title_short | Digital Image Tamper Detection Technique Based on Spectrum Analysis of CFA Artifacts |
title_sort | digital image tamper detection technique based on spectrum analysis of cfa artifacts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163339/ https://www.ncbi.nlm.nih.gov/pubmed/30149640 http://dx.doi.org/10.3390/s18092804 |
work_keys_str_mv | AT gonzalezfernandezedgar digitalimagetamperdetectiontechniquebasedonspectrumanalysisofcfaartifacts AT sandovalorozcoanalucila digitalimagetamperdetectiontechniquebasedonspectrumanalysisofcfaartifacts AT garciavillalbaluisjavier digitalimagetamperdetectiontechniquebasedonspectrumanalysisofcfaartifacts AT hernandezcastrojulio digitalimagetamperdetectiontechniquebasedonspectrumanalysisofcfaartifacts |