Cargando…
Two Different Strategies to Enhance Osseointegration in Porous Titanium: Inorganic Thermo-Chemical Treatment Versus Organic Coating by Peptide Adsorption
In this study, highly-interconnected porous titanium implants were produced by powder sintering with different porous diameters and open interconnectivity. The actual foams were produced using high cost technologies: Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), and spark plasma...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163352/ https://www.ncbi.nlm.nih.gov/pubmed/30200178 http://dx.doi.org/10.3390/ijms19092574 |
_version_ | 1783359340395102208 |
---|---|
author | Ortiz-Hernandez, Monica Rappe, Katrin S. Molmeneu, Meritxell Mas-Moruno, Carles Guillem-Marti, Jordi Punset, Miquel Caparros, Cristina Calero, Jose Franch, Jordi Fernandez-Fairen, Mariano Gil, Javier |
author_facet | Ortiz-Hernandez, Monica Rappe, Katrin S. Molmeneu, Meritxell Mas-Moruno, Carles Guillem-Marti, Jordi Punset, Miquel Caparros, Cristina Calero, Jose Franch, Jordi Fernandez-Fairen, Mariano Gil, Javier |
author_sort | Ortiz-Hernandez, Monica |
collection | PubMed |
description | In this study, highly-interconnected porous titanium implants were produced by powder sintering with different porous diameters and open interconnectivity. The actual foams were produced using high cost technologies: Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), and spark plasma sintering, and the porosity and/or interconnection was not optimized. The aim was to generate a bioactive surface on foams using two different strategies, based on inorganic thermo-chemical treatment and organic coating by peptide adsorption, to enhance osseointegration. Porosity was produced using NaCl as a space holder and polyethyleneglicol as a binder phase. Static and fatigue tests were performed in order to determine mechanical behaviors. Surface bioactivation was performed using a thermo-chemical treatment or by chemical adsorption with peptides. Osteoblast-like cells were cultured and cytotoxicity was measured. Bioactivated scaffolds and a control were implanted in the tibiae of rabbits. Histomorphometric evaluation was performed at 4 weeks after implantation. Interconnected porosity was 53% with an average diameter of 210 µm and an elastic modulus of around 1 GPa with good mechanical properties. The samples presented cell survival values close to 100% of viability. Newly formed bone was observed inside macropores, through interconnected porosity, and on the implant surface. Successful bone colonization of inner structure (40%) suggested good osteoconductive capability of the implant. Bioactivated foams showed better results than non-treated ones, suggesting both bioactivation strategies induce osteointegration capability. |
format | Online Article Text |
id | pubmed-6163352 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61633522018-10-10 Two Different Strategies to Enhance Osseointegration in Porous Titanium: Inorganic Thermo-Chemical Treatment Versus Organic Coating by Peptide Adsorption Ortiz-Hernandez, Monica Rappe, Katrin S. Molmeneu, Meritxell Mas-Moruno, Carles Guillem-Marti, Jordi Punset, Miquel Caparros, Cristina Calero, Jose Franch, Jordi Fernandez-Fairen, Mariano Gil, Javier Int J Mol Sci Article In this study, highly-interconnected porous titanium implants were produced by powder sintering with different porous diameters and open interconnectivity. The actual foams were produced using high cost technologies: Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), and spark plasma sintering, and the porosity and/or interconnection was not optimized. The aim was to generate a bioactive surface on foams using two different strategies, based on inorganic thermo-chemical treatment and organic coating by peptide adsorption, to enhance osseointegration. Porosity was produced using NaCl as a space holder and polyethyleneglicol as a binder phase. Static and fatigue tests were performed in order to determine mechanical behaviors. Surface bioactivation was performed using a thermo-chemical treatment or by chemical adsorption with peptides. Osteoblast-like cells were cultured and cytotoxicity was measured. Bioactivated scaffolds and a control were implanted in the tibiae of rabbits. Histomorphometric evaluation was performed at 4 weeks after implantation. Interconnected porosity was 53% with an average diameter of 210 µm and an elastic modulus of around 1 GPa with good mechanical properties. The samples presented cell survival values close to 100% of viability. Newly formed bone was observed inside macropores, through interconnected porosity, and on the implant surface. Successful bone colonization of inner structure (40%) suggested good osteoconductive capability of the implant. Bioactivated foams showed better results than non-treated ones, suggesting both bioactivation strategies induce osteointegration capability. MDPI 2018-08-30 /pmc/articles/PMC6163352/ /pubmed/30200178 http://dx.doi.org/10.3390/ijms19092574 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ortiz-Hernandez, Monica Rappe, Katrin S. Molmeneu, Meritxell Mas-Moruno, Carles Guillem-Marti, Jordi Punset, Miquel Caparros, Cristina Calero, Jose Franch, Jordi Fernandez-Fairen, Mariano Gil, Javier Two Different Strategies to Enhance Osseointegration in Porous Titanium: Inorganic Thermo-Chemical Treatment Versus Organic Coating by Peptide Adsorption |
title | Two Different Strategies to Enhance Osseointegration in Porous Titanium: Inorganic Thermo-Chemical Treatment Versus Organic Coating by Peptide Adsorption |
title_full | Two Different Strategies to Enhance Osseointegration in Porous Titanium: Inorganic Thermo-Chemical Treatment Versus Organic Coating by Peptide Adsorption |
title_fullStr | Two Different Strategies to Enhance Osseointegration in Porous Titanium: Inorganic Thermo-Chemical Treatment Versus Organic Coating by Peptide Adsorption |
title_full_unstemmed | Two Different Strategies to Enhance Osseointegration in Porous Titanium: Inorganic Thermo-Chemical Treatment Versus Organic Coating by Peptide Adsorption |
title_short | Two Different Strategies to Enhance Osseointegration in Porous Titanium: Inorganic Thermo-Chemical Treatment Versus Organic Coating by Peptide Adsorption |
title_sort | two different strategies to enhance osseointegration in porous titanium: inorganic thermo-chemical treatment versus organic coating by peptide adsorption |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163352/ https://www.ncbi.nlm.nih.gov/pubmed/30200178 http://dx.doi.org/10.3390/ijms19092574 |
work_keys_str_mv | AT ortizhernandezmonica twodifferentstrategiestoenhanceosseointegrationinporoustitaniuminorganicthermochemicaltreatmentversusorganiccoatingbypeptideadsorption AT rappekatrins twodifferentstrategiestoenhanceosseointegrationinporoustitaniuminorganicthermochemicaltreatmentversusorganiccoatingbypeptideadsorption AT molmeneumeritxell twodifferentstrategiestoenhanceosseointegrationinporoustitaniuminorganicthermochemicaltreatmentversusorganiccoatingbypeptideadsorption AT masmorunocarles twodifferentstrategiestoenhanceosseointegrationinporoustitaniuminorganicthermochemicaltreatmentversusorganiccoatingbypeptideadsorption AT guillemmartijordi twodifferentstrategiestoenhanceosseointegrationinporoustitaniuminorganicthermochemicaltreatmentversusorganiccoatingbypeptideadsorption AT punsetmiquel twodifferentstrategiestoenhanceosseointegrationinporoustitaniuminorganicthermochemicaltreatmentversusorganiccoatingbypeptideadsorption AT caparroscristina twodifferentstrategiestoenhanceosseointegrationinporoustitaniuminorganicthermochemicaltreatmentversusorganiccoatingbypeptideadsorption AT calerojose twodifferentstrategiestoenhanceosseointegrationinporoustitaniuminorganicthermochemicaltreatmentversusorganiccoatingbypeptideadsorption AT franchjordi twodifferentstrategiestoenhanceosseointegrationinporoustitaniuminorganicthermochemicaltreatmentversusorganiccoatingbypeptideadsorption AT fernandezfairenmariano twodifferentstrategiestoenhanceosseointegrationinporoustitaniuminorganicthermochemicaltreatmentversusorganiccoatingbypeptideadsorption AT giljavier twodifferentstrategiestoenhanceosseointegrationinporoustitaniuminorganicthermochemicaltreatmentversusorganiccoatingbypeptideadsorption |