Cargando…
Wearable Sensor Data to Track Subject-Specific Movement Patterns Related to Clinical Outcomes Using a Machine Learning Approach
Wearable sensors can provide detailed information on human movement but the clinical impact of this information remains limited. We propose a machine learning approach, using wearable sensor data, to identify subject-specific changes in gait patterns related to improvements in clinical outcomes. Eig...
Autores principales: | Kobsar, Dylan, Ferber, Reed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163443/ https://www.ncbi.nlm.nih.gov/pubmed/30150560 http://dx.doi.org/10.3390/s18092828 |
Ejemplares similares
-
Using wearable sensors to classify subject-specific running biomechanical gait patterns based on changes in environmental weather conditions
por: Ahamed, Nizam Uddin, et al.
Publicado: (2018) -
Wearable sensors to predict improvement following an exercise intervention in patients with knee osteoarthritis
por: Kobsar, Dylan, et al.
Publicado: (2017) -
Automatic Posture and Movement Tracking of Infants with Wearable Movement Sensors
por: Airaksinen, Manu, et al.
Publicado: (2020) -
Gait Biomechanics and Patient-Reported Function as Predictors of Response to a Hip Strengthening Exercise Intervention in Patients with Knee Osteoarthritis
por: Kobsar, Dylan, et al.
Publicado: (2015) -
Wearable Inertial Sensors for Gait Analysis in Adults with Osteoarthritis—A Scoping Review
por: Kobsar, Dylan, et al.
Publicado: (2020)