Cargando…
Gas Leak Location Detection Based on Data Fusion with Time Difference of Arrival and Energy Decay Using an Ultrasonic Sensor Array
Ultrasonic gas leak location technology is based on the detection of ultrasonic waves generated by the ejection of pressured gas from leak holes in sealed containers or pipes. To obtain more accurate leak location information and determine the locations of leak holes in three-dimensional space, this...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163450/ https://www.ncbi.nlm.nih.gov/pubmed/30205433 http://dx.doi.org/10.3390/s18092985 |
Sumario: | Ultrasonic gas leak location technology is based on the detection of ultrasonic waves generated by the ejection of pressured gas from leak holes in sealed containers or pipes. To obtain more accurate leak location information and determine the locations of leak holes in three-dimensional space, this paper proposes an ultrasonic leak location approach based on multi-algorithm data fusion. With the help of a planar ultrasonic sensor array, the eigenvectors of two individual algorithms, i.e., the arrival distance difference, as determined from the time difference of arrival (TDOA) location algorithm, and the ratio of arrival distances from the energy decay (ED) location algorithm, are extracted and fused to calculate the three-dimensional coordinates of leak holes. The fusion is based on an extended Kalman filter, in which the results of the individual algorithms are seen as observation values. The final system state matrix is composed of distances between the measured leak hole and the sensors. Our experiments show that, under the condition in which the pressure in the measured container is 100 kPa, and the leak hole–sensor distance is 800 mm, the maximum error of the calculated results based on the data fusion location algorithm is less than 20 mm, and the combined accuracy is better than those of the individual location algorithms. |
---|