Cargando…
Correlating Synthesis Parameters to Morphological Entities: Predictive Modeling of Biopolymer Aerogels
In the past decade, biopolymer aerogels have gained significant research attention due to their typical properties, such as low density and thermal insulation, which are reinforced with excellent biocompatibility, biodegradability, and ease of functionalization. Mechanical properties of these aeroge...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163492/ https://www.ncbi.nlm.nih.gov/pubmed/30205623 http://dx.doi.org/10.3390/ma11091670 |
_version_ | 1783359374146666496 |
---|---|
author | Rege, Ameya Preibisch, Imke Schestakow, Maria Ganesan, Kathirvel Gurikov, Pavel Milow, Barbara Smirnova, Irina Itskov, Mikhail |
author_facet | Rege, Ameya Preibisch, Imke Schestakow, Maria Ganesan, Kathirvel Gurikov, Pavel Milow, Barbara Smirnova, Irina Itskov, Mikhail |
author_sort | Rege, Ameya |
collection | PubMed |
description | In the past decade, biopolymer aerogels have gained significant research attention due to their typical properties, such as low density and thermal insulation, which are reinforced with excellent biocompatibility, biodegradability, and ease of functionalization. Mechanical properties of these aerogels play an important role in several applications and should be evaluated based on synthesis parameters. To this end, preparation and characterization of polysaccharide-based aerogels, such as pectin, cellulose and k-carrageenan, is first discussed. An interrelationship between their synthesis parameters and morphological entities is established. Such aerogels are usually characterized by a cellular morphology, and under compression undergo large deformations. Therefore, a nonlinear constitutive model is proposed based on large deflections in microcell walls of the aerogel network. Different sizes of the microcells within the network are identified via nitrogen desorption isotherms. Damage is initiated upon pore collapse, which is shown to result from the failure of the microcell wall fibrils. Finally, the model predictions are validated against experimental data of pectin, cellulose, and k-carrageenan aerogels. Given the micromechanical nature of the model, a clear correlation—qualitative and quantitative—between synthesis parameters and the model parameters is also substantiated. The proposed model is shown to be useful in tailoring the mechanical properties of biopolymer aerogels subject to changes in synthesis parameters. |
format | Online Article Text |
id | pubmed-6163492 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61634922018-10-12 Correlating Synthesis Parameters to Morphological Entities: Predictive Modeling of Biopolymer Aerogels Rege, Ameya Preibisch, Imke Schestakow, Maria Ganesan, Kathirvel Gurikov, Pavel Milow, Barbara Smirnova, Irina Itskov, Mikhail Materials (Basel) Article In the past decade, biopolymer aerogels have gained significant research attention due to their typical properties, such as low density and thermal insulation, which are reinforced with excellent biocompatibility, biodegradability, and ease of functionalization. Mechanical properties of these aerogels play an important role in several applications and should be evaluated based on synthesis parameters. To this end, preparation and characterization of polysaccharide-based aerogels, such as pectin, cellulose and k-carrageenan, is first discussed. An interrelationship between their synthesis parameters and morphological entities is established. Such aerogels are usually characterized by a cellular morphology, and under compression undergo large deformations. Therefore, a nonlinear constitutive model is proposed based on large deflections in microcell walls of the aerogel network. Different sizes of the microcells within the network are identified via nitrogen desorption isotherms. Damage is initiated upon pore collapse, which is shown to result from the failure of the microcell wall fibrils. Finally, the model predictions are validated against experimental data of pectin, cellulose, and k-carrageenan aerogels. Given the micromechanical nature of the model, a clear correlation—qualitative and quantitative—between synthesis parameters and the model parameters is also substantiated. The proposed model is shown to be useful in tailoring the mechanical properties of biopolymer aerogels subject to changes in synthesis parameters. MDPI 2018-09-09 /pmc/articles/PMC6163492/ /pubmed/30205623 http://dx.doi.org/10.3390/ma11091670 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rege, Ameya Preibisch, Imke Schestakow, Maria Ganesan, Kathirvel Gurikov, Pavel Milow, Barbara Smirnova, Irina Itskov, Mikhail Correlating Synthesis Parameters to Morphological Entities: Predictive Modeling of Biopolymer Aerogels |
title | Correlating Synthesis Parameters to Morphological Entities: Predictive Modeling of Biopolymer Aerogels |
title_full | Correlating Synthesis Parameters to Morphological Entities: Predictive Modeling of Biopolymer Aerogels |
title_fullStr | Correlating Synthesis Parameters to Morphological Entities: Predictive Modeling of Biopolymer Aerogels |
title_full_unstemmed | Correlating Synthesis Parameters to Morphological Entities: Predictive Modeling of Biopolymer Aerogels |
title_short | Correlating Synthesis Parameters to Morphological Entities: Predictive Modeling of Biopolymer Aerogels |
title_sort | correlating synthesis parameters to morphological entities: predictive modeling of biopolymer aerogels |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163492/ https://www.ncbi.nlm.nih.gov/pubmed/30205623 http://dx.doi.org/10.3390/ma11091670 |
work_keys_str_mv | AT regeameya correlatingsynthesisparameterstomorphologicalentitiespredictivemodelingofbiopolymeraerogels AT preibischimke correlatingsynthesisparameterstomorphologicalentitiespredictivemodelingofbiopolymeraerogels AT schestakowmaria correlatingsynthesisparameterstomorphologicalentitiespredictivemodelingofbiopolymeraerogels AT ganesankathirvel correlatingsynthesisparameterstomorphologicalentitiespredictivemodelingofbiopolymeraerogels AT gurikovpavel correlatingsynthesisparameterstomorphologicalentitiespredictivemodelingofbiopolymeraerogels AT milowbarbara correlatingsynthesisparameterstomorphologicalentitiespredictivemodelingofbiopolymeraerogels AT smirnovairina correlatingsynthesisparameterstomorphologicalentitiespredictivemodelingofbiopolymeraerogels AT itskovmikhail correlatingsynthesisparameterstomorphologicalentitiespredictivemodelingofbiopolymeraerogels |