Cargando…
Artificial-Intelligence-Based Prediction of Clinical Events among Hemodialysis Patients Using Non-Contact Sensor Data
Non-contact sensors are gaining popularity in clinical settings to monitor the vital parameters of patients. In this study, we used a non-contact sensor device to monitor vital parameters like the heart rate, respiration rate, and heart rate variability of hemodialysis (HD) patients for a period of...
Autores principales: | Thakur, Saurabh Singh, Abdul, Shabbir Syed, Chiu, Hsiao-Yean (Shannon), Roy, Ram Babu, Huang, Po-Yu, Malwade, Shwetambara, Nursetyo, Aldilas Achmad, Li, Yu-Chuan (Jack) |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163638/ https://www.ncbi.nlm.nih.gov/pubmed/30150592 http://dx.doi.org/10.3390/s18092833 |
Ejemplares similares
-
Virtual reality among the elderly: a usefulness and acceptance study from Taiwan
por: Syed-Abdul, Shabbir, et al.
Publicado: (2019) -
COVID-19 preventive measures showing an unintended decline in infectious diseases in Taiwan
por: Galvin, Cooper J., et al.
Publicado: (2020) -
Assessment of effects of moon phases on hospital outpatient visits: An observational national study
por: Uddin, Mohy, et al.
Publicado: (2023) -
SlimMe, a Chatbot With Artificial Empathy for Personal Weight Management: System Design and Finding
por: Rahmanti, Annisa Ristya, et al.
Publicado: (2022) -
Using machine learning models to predict the initiation of renal replacement therapy among chronic kidney disease patients
por: Dovgan, Erik, et al.
Publicado: (2020)