Cargando…
Kernel Sparse Representation with Hybrid Regularization for On-Road Traffic Sensor Data Imputation
The problem of missing values (MVs) in traffic sensor data analysis is universal in current intelligent transportation systems because of various reasons, such as sensor malfunction, transmission failure, etc. Accurate imputation of MVs is the foundation of subsequent data analysis tasks since most...
Autores principales: | Chen, Xiaobo, Chen, Cheng, Cai, Yingfeng, Wang, Hai, Ye, Qiaolin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163639/ https://www.ncbi.nlm.nih.gov/pubmed/30200348 http://dx.doi.org/10.3390/s18092884 |
Ejemplares similares
-
Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation
por: Sun, Rui, et al.
Publicado: (2016) -
Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
por: Li, Shicheng, et al.
Publicado: (2021) -
Prediction of S-Nitrosylation Modification Sites Based on Kernel Sparse Representation Classification and mRMR Algorithm
por: Huang, Guohua, et al.
Publicado: (2014) -
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
A Hybrid Sparse Representation Model for Image Restoration
por: Zhou, Caiyue, et al.
Publicado: (2022)