Cargando…

Effect of Contact Pressure on the Performance of Carbon Nanotube Arrays Thermal Interface Material

Vertically aligned carbon nanotube (CNT) arrays are promising candidates for advanced thermal interface materials (TIMs) since they possess high mechanical compliance and high intrinsic thermal conductivity. Some of the previous works indicate that the CNT arrays in direct dry contact with the targe...

Descripción completa

Detalles Bibliográficos
Autores principales: Pei, Yu, Zhong, Hongmei, Wang, Mengyu, Zhang, Peng, Zhao, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163777/
https://www.ncbi.nlm.nih.gov/pubmed/30227621
http://dx.doi.org/10.3390/nano8090732
Descripción
Sumario:Vertically aligned carbon nanotube (CNT) arrays are promising candidates for advanced thermal interface materials (TIMs) since they possess high mechanical compliance and high intrinsic thermal conductivity. Some of the previous works indicate that the CNT arrays in direct dry contact with the target surface possess low contact thermal conductance, which is the dominant thermal resistance. Using a phase sensitive transient thermo-reflectance (PSTTR) technique, we measure the thermal conductance between CNT arrays and copper (Cu) surfaces under different pressures. The experiments demonstrated that the contact force is one of the crucial factors for optimizing the thermal performance of CNT array-based TIMs. The experimental results suggest that the Cu-CNT arrays’ contact thermal conductance has a strong dependence on the surface deformation and has an order of magnitude rise as the contact pressure increases from 0.05 to 0.15 MPa. However, further increase of the contact pressure beyond 0.15 MPa has little effect on the contact thermal resistance. This work could provide guidelines to determine the minimum requirement of packaging pressure on CNT TIMs.