Cargando…

Spatholobus suberectus Ameliorates Diabetes-Induced Renal Damage by Suppressing Advanced Glycation End Products in db/db Mice

Spatholobus suberectus (SS) is a medicinal herb commonly used in Asia to treat anemia, menoxenia and rheumatism. However, its effect of diabetes-induced renal damage and mechanisms of action against advanced glycation end-products (AGEs) are unclear. In this study, we evaluated the effects of SS on...

Descripción completa

Detalles Bibliográficos
Autores principales: Do, Moon Ho, Hur, Jinyoung, Choi, Jiwon, Kim, Yoonsook, Park, Ho-Young, Ha, Sang Keun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163801/
https://www.ncbi.nlm.nih.gov/pubmed/30223524
http://dx.doi.org/10.3390/ijms19092774
_version_ 1783359448679448576
author Do, Moon Ho
Hur, Jinyoung
Choi, Jiwon
Kim, Yoonsook
Park, Ho-Young
Ha, Sang Keun
author_facet Do, Moon Ho
Hur, Jinyoung
Choi, Jiwon
Kim, Yoonsook
Park, Ho-Young
Ha, Sang Keun
author_sort Do, Moon Ho
collection PubMed
description Spatholobus suberectus (SS) is a medicinal herb commonly used in Asia to treat anemia, menoxenia and rheumatism. However, its effect of diabetes-induced renal damage and mechanisms of action against advanced glycation end-products (AGEs) are unclear. In this study, we evaluated the effects of SS on diabetes-induced renal damage and explored the possible underlying mechanisms using db/db type 2 diabetes mice. db/db mice were administered SS extract (50 mg/kg) orally for 6 weeks. SS-treated group did not change body weight, blood glucose and glycated hemoglobin (HbA1c) levels. However, SS treatment reversed diabetes-induced dyslipidemia and urinary albumin/creatinine ratio in db/db mice. Moreover, SS administration showed significantly increased protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which is a transcription factor for antioxidant enzyme. SS significantly upregulated glyoxalase 1 (Glo1) and NADPH quinine oxidoreductase 1 (NQO1) expression but reduced CML accumulation and downregulated receptor for AGEs (RAGE). Furthermore, SS showed significant decrease of periodic acid–Schiff (PAS)-positive staining and AGEs accumulation in histological and immunohistochemical analyses of kidney tissues. Taken together, we concluded that SS ameliorated the renal damage by inhibiting diabetes-induced glucotoxicity, dyslipidemia and oxidative stress, through the Nrf2/antioxidant responsive element (ARE) stress-response system.
format Online
Article
Text
id pubmed-6163801
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-61638012018-10-10 Spatholobus suberectus Ameliorates Diabetes-Induced Renal Damage by Suppressing Advanced Glycation End Products in db/db Mice Do, Moon Ho Hur, Jinyoung Choi, Jiwon Kim, Yoonsook Park, Ho-Young Ha, Sang Keun Int J Mol Sci Article Spatholobus suberectus (SS) is a medicinal herb commonly used in Asia to treat anemia, menoxenia and rheumatism. However, its effect of diabetes-induced renal damage and mechanisms of action against advanced glycation end-products (AGEs) are unclear. In this study, we evaluated the effects of SS on diabetes-induced renal damage and explored the possible underlying mechanisms using db/db type 2 diabetes mice. db/db mice were administered SS extract (50 mg/kg) orally for 6 weeks. SS-treated group did not change body weight, blood glucose and glycated hemoglobin (HbA1c) levels. However, SS treatment reversed diabetes-induced dyslipidemia and urinary albumin/creatinine ratio in db/db mice. Moreover, SS administration showed significantly increased protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which is a transcription factor for antioxidant enzyme. SS significantly upregulated glyoxalase 1 (Glo1) and NADPH quinine oxidoreductase 1 (NQO1) expression but reduced CML accumulation and downregulated receptor for AGEs (RAGE). Furthermore, SS showed significant decrease of periodic acid–Schiff (PAS)-positive staining and AGEs accumulation in histological and immunohistochemical analyses of kidney tissues. Taken together, we concluded that SS ameliorated the renal damage by inhibiting diabetes-induced glucotoxicity, dyslipidemia and oxidative stress, through the Nrf2/antioxidant responsive element (ARE) stress-response system. MDPI 2018-09-14 /pmc/articles/PMC6163801/ /pubmed/30223524 http://dx.doi.org/10.3390/ijms19092774 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Do, Moon Ho
Hur, Jinyoung
Choi, Jiwon
Kim, Yoonsook
Park, Ho-Young
Ha, Sang Keun
Spatholobus suberectus Ameliorates Diabetes-Induced Renal Damage by Suppressing Advanced Glycation End Products in db/db Mice
title Spatholobus suberectus Ameliorates Diabetes-Induced Renal Damage by Suppressing Advanced Glycation End Products in db/db Mice
title_full Spatholobus suberectus Ameliorates Diabetes-Induced Renal Damage by Suppressing Advanced Glycation End Products in db/db Mice
title_fullStr Spatholobus suberectus Ameliorates Diabetes-Induced Renal Damage by Suppressing Advanced Glycation End Products in db/db Mice
title_full_unstemmed Spatholobus suberectus Ameliorates Diabetes-Induced Renal Damage by Suppressing Advanced Glycation End Products in db/db Mice
title_short Spatholobus suberectus Ameliorates Diabetes-Induced Renal Damage by Suppressing Advanced Glycation End Products in db/db Mice
title_sort spatholobus suberectus ameliorates diabetes-induced renal damage by suppressing advanced glycation end products in db/db mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163801/
https://www.ncbi.nlm.nih.gov/pubmed/30223524
http://dx.doi.org/10.3390/ijms19092774
work_keys_str_mv AT domoonho spatholobussuberectusamelioratesdiabetesinducedrenaldamagebysuppressingadvancedglycationendproductsindbdbmice
AT hurjinyoung spatholobussuberectusamelioratesdiabetesinducedrenaldamagebysuppressingadvancedglycationendproductsindbdbmice
AT choijiwon spatholobussuberectusamelioratesdiabetesinducedrenaldamagebysuppressingadvancedglycationendproductsindbdbmice
AT kimyoonsook spatholobussuberectusamelioratesdiabetesinducedrenaldamagebysuppressingadvancedglycationendproductsindbdbmice
AT parkhoyoung spatholobussuberectusamelioratesdiabetesinducedrenaldamagebysuppressingadvancedglycationendproductsindbdbmice
AT hasangkeun spatholobussuberectusamelioratesdiabetesinducedrenaldamagebysuppressingadvancedglycationendproductsindbdbmice