Cargando…

Strategies to Encapsulate the Staphylococcus aureus Bacteriophage phiIPLA-RODI

The antimicrobial properties of bacteriophages make them suitable food biopreservatives. However, such applications require the development of strategies that ensure stability of the phage particles during food processing. In this study, we assess the protective effect of encapsulation of the Staphy...

Descripción completa

Detalles Bibliográficos
Autores principales: González-Menéndez, Eva, Fernández, Lucía, Gutiérrez, Diana, Pando, Daniel, Martínez, Beatriz, Rodríguez, Ana, García, Pilar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163856/
https://www.ncbi.nlm.nih.gov/pubmed/30217072
http://dx.doi.org/10.3390/v10090495
_version_ 1783359461848514560
author González-Menéndez, Eva
Fernández, Lucía
Gutiérrez, Diana
Pando, Daniel
Martínez, Beatriz
Rodríguez, Ana
García, Pilar
author_facet González-Menéndez, Eva
Fernández, Lucía
Gutiérrez, Diana
Pando, Daniel
Martínez, Beatriz
Rodríguez, Ana
García, Pilar
author_sort González-Menéndez, Eva
collection PubMed
description The antimicrobial properties of bacteriophages make them suitable food biopreservatives. However, such applications require the development of strategies that ensure stability of the phage particles during food processing. In this study, we assess the protective effect of encapsulation of the Staphylococcus aureus bacteriophage phiIPLA-RODI in three kinds of nanovesicles (niosomes, liposomes, and transfersomes). All these systems allowed the successful encapsulation of phage phiIPLA-RODI with an efficiency ranged between 62% and 98%, regardless of the concentration of components (like phospholipids and surfactants) used for vesicle formation. Only niosomes containing 30 mg/mL of surfactants exhibited a slightly lower percentage of encapsulation. Regarding particle size distribution, the values determined for niosomes, liposomes, and transfersomes were 0.82 ± 0.09 µm, 1.66 ± 0.21 µm, and 0.55 ± 0.06 µm, respectively. Importantly, bacteriophage infectivity was maintained during storage for 6 months at 4 °C for all three types of nanovesicles, with the exception of liposomes containing a low concentration of components. In addition, we observed that niosomes partially protected the phage particles from low pH. Thus, while free phiIPLA-RODI was not detectable after 60 min of incubation at pH 4.5, titer of phage encapsulated in niosomes decreased only 2 log units. Overall, our results show that encapsulation represents an appropriate procedure to improve stability and, consequently, antimicrobial efficacy of phages for application in the food processing industry.
format Online
Article
Text
id pubmed-6163856
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-61638562018-10-11 Strategies to Encapsulate the Staphylococcus aureus Bacteriophage phiIPLA-RODI González-Menéndez, Eva Fernández, Lucía Gutiérrez, Diana Pando, Daniel Martínez, Beatriz Rodríguez, Ana García, Pilar Viruses Article The antimicrobial properties of bacteriophages make them suitable food biopreservatives. However, such applications require the development of strategies that ensure stability of the phage particles during food processing. In this study, we assess the protective effect of encapsulation of the Staphylococcus aureus bacteriophage phiIPLA-RODI in three kinds of nanovesicles (niosomes, liposomes, and transfersomes). All these systems allowed the successful encapsulation of phage phiIPLA-RODI with an efficiency ranged between 62% and 98%, regardless of the concentration of components (like phospholipids and surfactants) used for vesicle formation. Only niosomes containing 30 mg/mL of surfactants exhibited a slightly lower percentage of encapsulation. Regarding particle size distribution, the values determined for niosomes, liposomes, and transfersomes were 0.82 ± 0.09 µm, 1.66 ± 0.21 µm, and 0.55 ± 0.06 µm, respectively. Importantly, bacteriophage infectivity was maintained during storage for 6 months at 4 °C for all three types of nanovesicles, with the exception of liposomes containing a low concentration of components. In addition, we observed that niosomes partially protected the phage particles from low pH. Thus, while free phiIPLA-RODI was not detectable after 60 min of incubation at pH 4.5, titer of phage encapsulated in niosomes decreased only 2 log units. Overall, our results show that encapsulation represents an appropriate procedure to improve stability and, consequently, antimicrobial efficacy of phages for application in the food processing industry. MDPI 2018-09-13 /pmc/articles/PMC6163856/ /pubmed/30217072 http://dx.doi.org/10.3390/v10090495 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
González-Menéndez, Eva
Fernández, Lucía
Gutiérrez, Diana
Pando, Daniel
Martínez, Beatriz
Rodríguez, Ana
García, Pilar
Strategies to Encapsulate the Staphylococcus aureus Bacteriophage phiIPLA-RODI
title Strategies to Encapsulate the Staphylococcus aureus Bacteriophage phiIPLA-RODI
title_full Strategies to Encapsulate the Staphylococcus aureus Bacteriophage phiIPLA-RODI
title_fullStr Strategies to Encapsulate the Staphylococcus aureus Bacteriophage phiIPLA-RODI
title_full_unstemmed Strategies to Encapsulate the Staphylococcus aureus Bacteriophage phiIPLA-RODI
title_short Strategies to Encapsulate the Staphylococcus aureus Bacteriophage phiIPLA-RODI
title_sort strategies to encapsulate the staphylococcus aureus bacteriophage phiipla-rodi
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163856/
https://www.ncbi.nlm.nih.gov/pubmed/30217072
http://dx.doi.org/10.3390/v10090495
work_keys_str_mv AT gonzalezmenendezeva strategiestoencapsulatethestaphylococcusaureusbacteriophagephiiplarodi
AT fernandezlucia strategiestoencapsulatethestaphylococcusaureusbacteriophagephiiplarodi
AT gutierrezdiana strategiestoencapsulatethestaphylococcusaureusbacteriophagephiiplarodi
AT pandodaniel strategiestoencapsulatethestaphylococcusaureusbacteriophagephiiplarodi
AT martinezbeatriz strategiestoencapsulatethestaphylococcusaureusbacteriophagephiiplarodi
AT rodriguezana strategiestoencapsulatethestaphylococcusaureusbacteriophagephiiplarodi
AT garciapilar strategiestoencapsulatethestaphylococcusaureusbacteriophagephiiplarodi