Cargando…
Structured Background Modeling for Hyperspectral Anomaly Detection
Background modeling has been proven to be a promising method of hyperspectral anomaly detection. However, due to the cluttered imaging scene, modeling the background of an hyperspectral image (HSI) is often challenging. To mitigate this problem, we propose a novel structured background modeling-base...
Autores principales: | Li, Fei, Zhang, Lei, Zhang, Xiuwei, Chen, Yanjia, Jiang, Dongmei, Zhao, Genping, Zhang, Yanning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163918/ https://www.ncbi.nlm.nih.gov/pubmed/30227670 http://dx.doi.org/10.3390/s18093137 |
Ejemplares similares
-
Weighted Sparseness-Based Anomaly Detection for Hyperspectral Imagery
por: Lian, Xing, et al.
Publicado: (2023) -
Hierarchical Sub-Pixel Anomaly Detection Framework for Hyperspectral Imagery
por: Wang, Wenzheng, et al.
Publicado: (2018) -
An Unsupervised Deep Hyperspectral Anomaly Detector
por: Ma, Ning, et al.
Publicado: (2018) -
Progressive Line Processing of Kernel RX Anomaly Detection Algorithm for Hyperspectral Imagery
por: Zhao, Chunhui, et al.
Publicado: (2017) -
Occluded object detection and exposure in cluttered environments with automated hyperspectral anomaly detection
por: Hanson, Nathaniel, et al.
Publicado: (2022)