Cargando…
DNA Methylation Profiling of Breast Cancer Cell Lines along the Epithelial Mesenchymal Spectrum—Implications for the Choice of Circulating Tumour DNA Methylation Markers
(1) Background: Epithelial–mesenchymal plasticity (EMP) is a dynamic process whereby epithelial carcinoma cells reversibly acquire morphological and invasive characteristics typical of mesenchymal cells. Identifying the methylation differences between epithelial and mesenchymal states may assist in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164039/ https://www.ncbi.nlm.nih.gov/pubmed/30154364 http://dx.doi.org/10.3390/ijms19092553 |
_version_ | 1783359505138974720 |
---|---|
author | Le, Anh Viet-Phuong Szaumkessel, Marcin Tan, Tuan Zea Thiery, Jean-Paul Thompson, Erik W. Dobrovic, Alexander |
author_facet | Le, Anh Viet-Phuong Szaumkessel, Marcin Tan, Tuan Zea Thiery, Jean-Paul Thompson, Erik W. Dobrovic, Alexander |
author_sort | Le, Anh Viet-Phuong |
collection | PubMed |
description | (1) Background: Epithelial–mesenchymal plasticity (EMP) is a dynamic process whereby epithelial carcinoma cells reversibly acquire morphological and invasive characteristics typical of mesenchymal cells. Identifying the methylation differences between epithelial and mesenchymal states may assist in the identification of optimal DNA methylation biomarkers for the blood-based monitoring of cancer. (2) Methods: Methylation-sensitive high-resolution melting (MS-HRM) was used to examine the promoter methylation status of a panel of established and novel markers in a range of breast cancer cell lines spanning the epithelial–mesenchymal spectrum. Pyrosequencing was used to validate the MS-HRM results. (3) Results: VIM, DKK3, and CRABP1 were methylated in the majority of epithelial breast cancer cell lines, while methylation of GRHL2, MIR200C, and CDH1 was restricted to mesenchymal cell lines. Some markers that have been used to assess minimal residual disease such as AKR1B1 and APC methylation proved to be specific for epithelial breast cell lines. However, RASSF1A, RARβ, TWIST1, and SFRP2 methylation was seen in both epithelial and mesenchymal cell lines, supporting their suitability for a multimarker panel. (4) Conclusions: Profiling DNA methylation shows a distinction between epithelial and mesenchymal phenotypes. Understanding how DNA methylation varies between epithelial and mesenchymal phenotypes may lead to more rational selection of methylation-based biomarkers for circulating tumour DNA analysis. |
format | Online Article Text |
id | pubmed-6164039 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61640392018-10-10 DNA Methylation Profiling of Breast Cancer Cell Lines along the Epithelial Mesenchymal Spectrum—Implications for the Choice of Circulating Tumour DNA Methylation Markers Le, Anh Viet-Phuong Szaumkessel, Marcin Tan, Tuan Zea Thiery, Jean-Paul Thompson, Erik W. Dobrovic, Alexander Int J Mol Sci Article (1) Background: Epithelial–mesenchymal plasticity (EMP) is a dynamic process whereby epithelial carcinoma cells reversibly acquire morphological and invasive characteristics typical of mesenchymal cells. Identifying the methylation differences between epithelial and mesenchymal states may assist in the identification of optimal DNA methylation biomarkers for the blood-based monitoring of cancer. (2) Methods: Methylation-sensitive high-resolution melting (MS-HRM) was used to examine the promoter methylation status of a panel of established and novel markers in a range of breast cancer cell lines spanning the epithelial–mesenchymal spectrum. Pyrosequencing was used to validate the MS-HRM results. (3) Results: VIM, DKK3, and CRABP1 were methylated in the majority of epithelial breast cancer cell lines, while methylation of GRHL2, MIR200C, and CDH1 was restricted to mesenchymal cell lines. Some markers that have been used to assess minimal residual disease such as AKR1B1 and APC methylation proved to be specific for epithelial breast cell lines. However, RASSF1A, RARβ, TWIST1, and SFRP2 methylation was seen in both epithelial and mesenchymal cell lines, supporting their suitability for a multimarker panel. (4) Conclusions: Profiling DNA methylation shows a distinction between epithelial and mesenchymal phenotypes. Understanding how DNA methylation varies between epithelial and mesenchymal phenotypes may lead to more rational selection of methylation-based biomarkers for circulating tumour DNA analysis. MDPI 2018-08-28 /pmc/articles/PMC6164039/ /pubmed/30154364 http://dx.doi.org/10.3390/ijms19092553 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Le, Anh Viet-Phuong Szaumkessel, Marcin Tan, Tuan Zea Thiery, Jean-Paul Thompson, Erik W. Dobrovic, Alexander DNA Methylation Profiling of Breast Cancer Cell Lines along the Epithelial Mesenchymal Spectrum—Implications for the Choice of Circulating Tumour DNA Methylation Markers |
title | DNA Methylation Profiling of Breast Cancer Cell Lines along the Epithelial Mesenchymal Spectrum—Implications for the Choice of Circulating Tumour DNA Methylation Markers |
title_full | DNA Methylation Profiling of Breast Cancer Cell Lines along the Epithelial Mesenchymal Spectrum—Implications for the Choice of Circulating Tumour DNA Methylation Markers |
title_fullStr | DNA Methylation Profiling of Breast Cancer Cell Lines along the Epithelial Mesenchymal Spectrum—Implications for the Choice of Circulating Tumour DNA Methylation Markers |
title_full_unstemmed | DNA Methylation Profiling of Breast Cancer Cell Lines along the Epithelial Mesenchymal Spectrum—Implications for the Choice of Circulating Tumour DNA Methylation Markers |
title_short | DNA Methylation Profiling of Breast Cancer Cell Lines along the Epithelial Mesenchymal Spectrum—Implications for the Choice of Circulating Tumour DNA Methylation Markers |
title_sort | dna methylation profiling of breast cancer cell lines along the epithelial mesenchymal spectrum—implications for the choice of circulating tumour dna methylation markers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164039/ https://www.ncbi.nlm.nih.gov/pubmed/30154364 http://dx.doi.org/10.3390/ijms19092553 |
work_keys_str_mv | AT leanhvietphuong dnamethylationprofilingofbreastcancercelllinesalongtheepithelialmesenchymalspectrumimplicationsforthechoiceofcirculatingtumourdnamethylationmarkers AT szaumkesselmarcin dnamethylationprofilingofbreastcancercelllinesalongtheepithelialmesenchymalspectrumimplicationsforthechoiceofcirculatingtumourdnamethylationmarkers AT tantuanzea dnamethylationprofilingofbreastcancercelllinesalongtheepithelialmesenchymalspectrumimplicationsforthechoiceofcirculatingtumourdnamethylationmarkers AT thieryjeanpaul dnamethylationprofilingofbreastcancercelllinesalongtheepithelialmesenchymalspectrumimplicationsforthechoiceofcirculatingtumourdnamethylationmarkers AT thompsonerikw dnamethylationprofilingofbreastcancercelllinesalongtheepithelialmesenchymalspectrumimplicationsforthechoiceofcirculatingtumourdnamethylationmarkers AT dobrovicalexander dnamethylationprofilingofbreastcancercelllinesalongtheepithelialmesenchymalspectrumimplicationsforthechoiceofcirculatingtumourdnamethylationmarkers |