Cargando…
Merging Heterocyclic Chemistry and Biocatalysis in One-Pot Processes through Compartmentalization of the Reaction Steps
A proof of concept for a one-pot process merging a heterocycle formation by a classical chemical approach at basic conditions with a biocatalytic reduction, running at neutral pH conditions, is reported. A crucial component for this process is the compartmentalization of the single reactions by the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164193/ https://www.ncbi.nlm.nih.gov/pubmed/30071637 http://dx.doi.org/10.3390/bioengineering5030060 |
Sumario: | A proof of concept for a one-pot process merging a heterocycle formation by a classical chemical approach at basic conditions with a biocatalytic reduction, running at neutral pH conditions, is reported. A crucial component for this process is the compartmentalization of the single reactions by the use of polydimethylsiloxane thimbles. This process was applied successfully towards an asymmetric synthesis of (S)-2,2,3-trimethyl-1-thia-4-azaspiro[4.4]nonane, leading to excellent enantioselectivities of 99% enantiomeric excess (ee). |
---|